
Posets and words in Sage-Combinat

Franco V. Saliola
〈saliola@gmail.com〉

Institut Gaspard Monge
Université de Marne-la-Vallée

France

Sage Days 10
11 October 2008

Combinatorics on Words

A word is a sequence of elements — called letters — from a set A.

Thus, words arise in several areas of mathematics and the sciences:

word problem in semigroup and group theory;

permutations as words in combinatorics;

automatic sequences in number theory;

DNA in biology;

words in linguistics;

etc.

Combinatorics on Words

A word is a sequence of elements — called letters — from a set A.

Thus, words arise in several areas of mathematics and the sciences:

word problem in semigroup and group theory;

permutations as words in combinatorics;

automatic sequences in number theory;

DNA in biology;

words in linguistics;

etc.

Combinatorics on Words

Goal: develop tools for studying words.

Examples: want efficient algorithms and data structures for

searching text;

pattern recognition;

inferring combinatorial, probabilistic and statistical properties;

counting distinct factors;

storing and retrieving factors;

factorizations (Lyndon, Crochemore, . . .);

. . . .

Combinatorics on Words

Goal: develop tools for studying words.

Examples: want efficient algorithms and data structures for

searching text;

pattern recognition;

inferring combinatorial, probabilistic and statistical properties;

counting distinct factors;

storing and retrieving factors;

factorizations (Lyndon, Crochemore, . . .);

. . . .

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

François Bergeron is invited to Sage Days 7, but couldn’t go.

Me: “Me! Me! I want to go! Tell them to invite me! Pay for
my trip! I promise to give a talk about Sage when I get back!”

I go to Sage Days 7, and get really excited about what I see.

I give a very enthusiastic talk about it when I get back.

Others get excited too!

History

Srečko Brlek wants to base a Combinatorics on Words
package on Sage.

Reasons: algorithms are useful; much software exists, but it is
fragmented, not unified, unmaintained; no nice interface.

He puts his (grant) money where his mouth is: hires people to
work on it over the summer.

May 2008: sage-words is born. Developers: Arnauld Bergeron,
Sébastien Labbé, Amy Glen and me.

Sept. 2008: People at MLV also want to get in on the action;
we’ll be discussing more about what should be included soon.

History

Srečko Brlek wants to base a Combinatorics on Words
package on Sage.

Reasons: algorithms are useful; much software exists, but it is
fragmented, not unified, unmaintained; no nice interface.

He puts his (grant) money where his mouth is: hires people to
work on it over the summer.

May 2008: sage-words is born. Developers: Arnauld Bergeron,
Sébastien Labbé, Amy Glen and me.

Sept. 2008: People at MLV also want to get in on the action;
we’ll be discussing more about what should be included soon.

History

Srečko Brlek wants to base a Combinatorics on Words
package on Sage.

Reasons: algorithms are useful; much software exists, but it is
fragmented, not unified, unmaintained; no nice interface.

He puts his (grant) money where his mouth is: hires people to
work on it over the summer.

May 2008: sage-words is born. Developers: Arnauld Bergeron,
Sébastien Labbé, Amy Glen and me.

Sept. 2008: People at MLV also want to get in on the action;
we’ll be discussing more about what should be included soon.

History

Srečko Brlek wants to base a Combinatorics on Words
package on Sage.

Reasons: algorithms are useful; much software exists, but it is
fragmented, not unified, unmaintained; no nice interface.

He puts his (grant) money where his mouth is: hires people to
work on it over the summer.

May 2008: sage-words is born. Developers: Arnauld Bergeron,
Sébastien Labbé, Amy Glen and me.

Sept. 2008: People at MLV also want to get in on the action;
we’ll be discussing more about what should be included soon.

History

Srečko Brlek wants to base a Combinatorics on Words
package on Sage.

Reasons: algorithms are useful; much software exists, but it is
fragmented, not unified, unmaintained; no nice interface.

He puts his (grant) money where his mouth is: hires people to
work on it over the summer.

May 2008: sage-words is born. Developers: Arnauld Bergeron,
Sébastien Labbé, Amy Glen and me.

Sept. 2008: People at MLV also want to get in on the action;
we’ll be discussing more about what should be included soon.

Pre-existing software?

Pre-existing software?

What does sage-words do?

Demo

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

What’s next for sage-words?

Current version: 0.3. Before 1.0 design may change drastically.

Want to merge into sage-combinat; I want to use
CombinatorialClass, Streams, etc.

New features need to be added.

Morphisms should be able to map into other monoids.

Better algorithms need to be implemented.

Need to decide an best backend: suffix trees? other?

Cythonize!

Posets in sage-combinat

A poset is a set with a partial-order.

Current code is for working with finite posets via the Hasse
diagram (that is, it uses DiGraphs as the backend).

DEMO

Posets in sage-combinat

A poset is a set with a partial-order.

Current code is for working with finite posets via the Hasse
diagram (that is, it uses DiGraphs as the backend).

DEMO

Posets in sage-combinat

A poset is a set with a partial-order.

Current code is for working with finite posets via the Hasse
diagram (that is, it uses DiGraphs as the backend).

DEMO

Posets in sage-combinat

A poset is a set with a partial-order.

Current code is for working with finite posets via the Hasse
diagram (that is, it uses DiGraphs as the backend).

DEMO

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

Posets in sage-combinat

Lots to do here:

Improve the current code: finite poset generator; additional
input methods; fix bugs & docstrings;

Rethink the design.

Want to be able to work with posets without storing the
Hasse diagram (with very big, like infinite, posets).

Posets with EL-labellings.

Want to have operations defined on posets: ∗, +, /,

Very important: Need to be able to take objects (say,
permutations) and turn them into posets easily.

