Decomposable Objects and Combinatorial Species

Mike Hansen

University of Washington

October 11, 2008

Mike Hansen Decomposable Objects and Combinatorial Species

Decomposable Objects

What are decomposable objects?

What are decomposable objects?

Decomposable objects include trees, graphs, functions, relations, permutations, sets, subsets, cycles, lists, and much more...

Decomposable Objects

What do we want to do with decomposable objects?

- Count them.
- Generate them.
- Generate random ones.
- ▶ ...

Decomposable Objects

What do we want to do with decomposable objects?

- Count them.
- Generate them.
- Generate random ones.
- ▶

(in both the labeled and unlabeled cases)

Existing Software

- combstruct in Maple (Project Algo, Mishna, Murray, and Zimmermann)
- CS in MuPAD (Project Algo, Corteel, Denis, Dutour, Sarron, and Zimmerman)
- decomposableObject in MUPAD-COMBINAT (Cellier, Hivert, and Thiéry)
- ► ALDOR-COMBINAT in Aldor/FriCAS (Hemmecke and Rubey)

ALDOR-COMBINAT

- Started in 2006 by Ralf Hemmecke and Martin Rubey.
- Written as a fully literate program in the language of Aldor that tries to stay as close as possible to the theory of species as outlined in "Combinatorial Species and Tree-like Structures" by Bergeron, Labelle, and Leroux.
- Can be found at http://www.risc.unilinz.ac.at/people/hemmecke/aldor/combinat/

Let $\ensuremath{\mathbb{B}}$ be the category of finite sets with bijections. A species is simply a functor

$$F:\mathbb{B}\to\mathbb{B}.$$

What are species?

▶ For every finite set *A*, we get a finite set *F*[*A*] whose elements are said to be the *structures* of *F* on the underlying set *A*.

What are species?

▶ For each bijection $\sigma : A \rightarrow B$, we have a bijection

 $F[\sigma]:F[A]\to F[B]$

which is called the transport of *F*-structures along σ .

What are species?

▶ F is *functorial*, which means that

•

1.
$$F[Id_A] = Id_{F[A]}$$

2. $F[\psi\sigma] = F[\psi]F[\sigma]$

We define the species of partitions P by letting P[A] be all set partitions of A.

We define the species of partitions P by letting P[A] be all set partitions of A. For example,

$$\begin{split} P[\{1,2,3\}] &= [\{\{1,2,3\}\}, \{\{1,3\}, \{2\}\}, \{\{1,2\}, \{3\}\}, \\ & \{\{2,3\}, \{1\}\}, \{\{1\}, \{2\}, \{3\}\}]. \end{split}$$

We define the species of partitions P by letting P[A] be all set partitions of A. For example,

$$P[\{1,2,3\}] = [\{\{1,2,3\}\}, \{\{1,3\}, \{2\}\}, \{\{1,2\}, \{3\}\}, \\ \{\{2,3\}, \{1\}\}, \{\{1\}, \{2\}, \{3\}\}].$$

Let $\sigma:\{1,2,3\}\to\{1,2,3\}$ be the bijection which sends 2 to 3 and 3 to 2. Then,

$$P[\sigma](\{\{1,3\},\{2\}\}) = \{\{1,2\},\{3\}\}$$

```
sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).list()
[\{\{1, 2, 3\}\},
 \{\{1, 3\}, \{2\}\},\
 \{\{1, 2\}, \{3\}\},\
 \{\{2, 3\}, \{1\}\},\
 \{\{1\}, \{2\}, \{3\}\}\}
sage: a = _[1]; a
\{\{1, 3\}, \{2\}\}
sage: a.transport(PermutationGroupElement((2,3)))
\{\{1, 2\}, \{3\}\}
```

Building Blocks

- Partitions
- Permutations
- Cycles
- Sets
- Subsets
- Linear orders (sequences)
- Singleton and empty set species

Addition

(F+G)[A] = F[A] + G[A]

The sum on the right side corresponds to a disjoint union.

• • = • • = •

э

Addition

(F+G)[A] = F[A] + G[A]

The sum on the right side corresponds to a disjoint union. Example:

```
sage: P = species.PartitionSpecies()
sage: P.structures([1,2]).list()
[{{1, 2}}, {{1}, {2}}]
sage: F = P+P
sage: F.structures([1,2]).list()
[{{1, 2}}, {{1}, {2}}, {{1, 2}}, {{1}, {2}}]
```

Multiplication

∃ → < ∃ →</p>

э

Multiplication

Example:

```
sage: P = species.PartitionSpecies()
sage: F = P*P
sage: F.structures([1,2]).list()
[{}*{{1, 2}},
    {}*{{1}, {2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{1}}*{{2}},
    {{2}}*{{3}}.
    {{2}}*{{3}}.
    {{3}}
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}*{{3}}.
    {{3}}.
    {{3}}*{{3}}.
    {{3}}.
    {{3}}*{{3}}.
    {{3}}.
    {{3}}*{{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
    {{3}}.
     .
    {{3}}.
    {{3}}.
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
     .
```

```
\{\{1\}, \{2\}\}*\{\}\}
```

Substitution

When $G[\emptyset] = \emptyset$, $(F \circ G)[A] = \sum_{\pi \in P[A]} F[\pi] \times \prod_{B \in \pi} G[B]$ $F \circ G$ $F \circ G$ $F \circ$

A B M A B M

3

Substitution

Example:

```
sage: E = species.SetSpecies()
sage: Eplus = species.SetSpecies(min=1)
sage: F = E(Eplus)
sage: F.structures([1,2,3]).list()
```

```
[F-structure: {{1, 2, 3}}; G-structures: [{1, 2, 3}],
F-structure: {{1, 3}, {2}}; G-structures: [{1, 3}, {2}],
F-structure: {{1, 2}, {3}}; G-structures: [{1, 2}, {3}],
F-structure: {{2, 3}, {1}}; G-structures: [{2, 3}, {1}],
F-structure: {{1}, {2}, {3}}; G-structures: [{1}, {2}, {3}]]
```

A B M A B M

Other Operations

- Functorial composition
- Derivative
- Pointing
- ▶ ...

э

ъ

Recursive definition / Implicit Equations

"A rooted tree is a root which is attached to a set of rooted trees."

$$A = X \cdot E(A)$$

Recursive definition / Implicit Equations

"A binary tree is either a leaf or a pair of binary trees."

$$B = X + B * B$$

Recursive definition / Implicit Equations

"A binary tree is either a leaf or a pair of binary trees."

$$B = X + B * B$$

Example:

4 B N 4 B N

The primary tools used in the theory of species are *generating series*. With each species, we can associate three different generating series:

- 1. (Exponential) Generating Series
- 2. Isomorphism Type Generating Series
- 3. Cycle Index Series

(Exponential) Generating Series

The (exponential) generating series of a species F is given by

$$F(x) = \sum_{n \ge 0} f_n \frac{x^n}{n!}$$

where f_n is the number of elements of F[A] for any A with n elements.

(Exponential) Generating Series

The (exponential) generating series of a species F is given by

$$F(x) = \sum_{n \ge 0} f_n \frac{x^n}{n!}$$

where f_n is the number of elements of F[A] for any A with n elements.

Example:

The generating series for the species of partitions is given by

$$P(x) = \sum_{n \ge 0} B_n \frac{x^n}{n!}$$

where B_n are the Bell numbers.

(Exponential) Generating Series

Example:

```
sage: P = species.PartitionSpecies()
sage: gs = P.generating_series()
sage: gs.coefficients(5)
[1, 1, 1, 5/6, 5/8]
sage: gs
1 + x + x<sup>2</sup> + 5/6*x<sup>3</sup> + 5/8*x<sup>4</sup> + 0(x<sup>5</sup>)
sage: gs.counts(5)
[1, 1, 2, 5, 15]
```

Isomorphic Structures

Two structures $a \in F[A]$ and $b \in F[B]$ are said to be isomorphic if there exists a bijection $\sigma : A \to B$ such that

$$F[\sigma](a) = b.$$

Example:

```
sage: a
{{1, 3}, {2}}
sage: b
{{1, 2}, {3}}
sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}
sage: a.is_isomorphic(b)
True
```

Isomorphic Structures

-

3 N

Isomorphic Structures

```
sage: P.isotypes([1,2,3,4]).list()
[\{\{1, 2, 3, 4\}\},
 \{\{1, 2, 3\}, \{4\}\},\
 \{\{1, 2\}, \{3, 4\}\}.
 \{\{1, 2\}, \{3\}, \{4\}\},\
 \{\{1\}, \{2\}, \{3\}, \{4\}\}\}
sage: B.isotypes([1,2,3,4]).list()
[1*(2*(3*4))]
 1*((2*3)*4),
 (1*2)*(3*4).
 (1*(2*3))*4.
 ((1*2)*3)*4]
```

Isomorphism Type Generating Series

The isomorphism type generating series of F is defined to be

$$\tilde{F}(x) = \sum_{n \ge 0} \tilde{f}_n x^n$$

where \tilde{f}_n is the number of non-isomorphic elements of F[A] for any A with n elements.

Isomorphism Type Generating Series

Example:

The isomorphism type generating series for the species of partitions is given by

$$\tilde{P}(x) = \sum_{n \ge 0} p_n x^n$$

where p_n is the number of integer partitions of n.

Isomorphism Type Generating Series

Example:

```
sage: P = species.PartitionSpecies()
sage: itgs = P.isotype_generating_series()
sage: itgs.coefficients(5)
[1, 1, 2, 3, 5]
sage: itgs
1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 0(x^5)
```

Generating Series

The generating series play nicely with the operations on species:

$$(F+G)(x) = F(x) + G(x), (\widetilde{F+G})(x) = \widetilde{F}(x) + \widetilde{G}(x)$$

$$(F \cdot G)(x) = F(x) \cdot G(x), (\widetilde{F \cdot G})(x) = \widetilde{F}(x) \cdot \widetilde{G}(x)$$

$$(F \circ G)(x) = F(G(x))$$

Putting It Together

Rooted Trees

```
sage: E = species.SetSpecies()
sage: X = species.SingletonSpecies()
sage: A = species.CombinatorialSpecies()
sage: A.define(X*E(A))
sage: A.isotype_generating_series().coefficients(10)
[0, 1, 1, 2, 4, 9, 20, 48, 115, 286]
sage: sloane_find(_)[0][1]
Searching Sloane's online database...
```

'Number of rooted trees with n nodes (or connected functions with a fixed point).'

Weighted Species: Ordered Trees

```
sage: q = QQ['q'].gen()
sage: leaf = species.SingletonSpecies()
sage: internal_node = species.SingletonSpecies(weight=q)
sage: L = species.LinearOrderSpecies(min=1)
sage: T = species.CombinatorialSpecies()
sage: T.define(leaf + internal_node*L(T))
sage: T.isotype_generating_series().coefficient(4)
q^3 + 3*q^2 + q
```

```
Mike Hansen Decomposable Objects and Combinatorial Species
```

• • = • • = • = •

Future Work (This Week!)

- Automatically recognizing recurrence relations
- More efficient random generation
- Multisort species
- Plugging in data structures into the generation routines

Thanks!

Mike Hansen Decomposable Objects and Combinatorial Species

æ

★ ∃ → < ∃</p>