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Decomposable Objects

What are decomposable objects?

Decomposable objects include trees, graphs, functions, relations,
permutations, sets, subsets, cycles, lists, and much more...
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Decomposable Objects

What do we want to do with decomposable objects?

I Count them.

I Generate them.

I Generate random ones.

I . . .

(in both the labeled and unlabeled cases)
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Existing Software

I combstruct in Maple (Project Algo, Mishna, Murray, and
Zimmermann)

I CS in MuPAD (Project Algo, Corteel, Denis, Dutour, Sarron,
and Zimmerman)

I decomposableObject in MuPAD-Combinat (Cellier, Hivert,
and Thiéry)

I Aldor-Combinat in Aldor/FriCAS (Hemmecke and Rubey)
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Aldor-Combinat

I Started in 2006 by Ralf Hemmecke and Martin Rubey.

I Written as a fully literate program in the language of Aldor
that tries to stay as close as possible to the theory of species
as outlined in “Combinatorial Species and Tree-like
Structures” by Bergeron, Labelle, and Leroux.

I Can be found at http://www.risc.uni-
linz.ac.at/people/hemmecke/aldor/combinat/
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What are species?

Let B be the category of finite sets with bijections. A species is
simply a functor

F : B→ B.
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What are species?

I For every finite set A, we get a finite set F [A] whose elements
are said to be the structures of F on the underlying set A.
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What are species?

I For each bijection σ : A→ B, we have a bijection

F [σ] : F [A]→ F [B]

which is called the transport of F -structures along σ.
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What are species?

I F is functorial, which means that

1. F [IdA] = IdF [A]

2. F [ψσ] = F [ψ]F [σ].
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Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A.

For example,

P[{1, 2, 3}] = [{{1, 2, 3}}, {{1, 3}, {2}}, {{1, 2}, {3}},
{{2, 3}, {1}}, {{1}, {2}, {3}}].

Let σ : {1, 2, 3} → {1, 2, 3} be the bijection which sends 2 to 3
and 3 to 2. Then,

P[σ]({{1, 3}, {2}}) = {{1, 2}, {3}}
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Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).list()
[{{1, 2, 3}},
{{1, 3}, {2}},
{{1, 2}, {3}},
{{2, 3}, {1}},
{{1}, {2}, {3}}]

sage: a = _[1]; a
{{1, 3}, {2}}
sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}

Mike Hansen Decomposable Objects and Combinatorial Species



Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).list()
[{{1, 2, 3}},
{{1, 3}, {2}},
{{1, 2}, {3}},
{{2, 3}, {1}},
{{1}, {2}, {3}}]

sage: a = _[1]; a
{{1, 3}, {2}}
sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}

Mike Hansen Decomposable Objects and Combinatorial Species



Building Blocks

I Partitions

I Permutations

I Cycles

I Sets

I Subsets

I Linear orders (sequences)

I Singleton and empty set species
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Addition

(F + G )[A] = F [A] + G [A]

The sum on the right side corresponds to a disjoint union.

Example:

sage: P = species.PartitionSpecies()
sage: P.structures([1,2]).list()
[{{1, 2}}, {{1}, {2}}]

sage: F = P+P
sage: F.structures([1,2]).list()
[{{1, 2}}, {{1}, {2}}, {{1, 2}}, {{1}, {2}}]
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Multiplication

(F · G )[A] =
∑

B+C=A

F [B]× G [C ]
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Multiplication

Example:

sage: P = species.PartitionSpecies()
sage: F = P*P
sage: F.structures([1,2]).list()

[{}*{{1, 2}},
{}*{{1}, {2}},
{{1}}*{{2}},
{{2}}*{{1}},
{{1, 2}}*{},
{{1}, {2}}*{}]
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Substitution

When G [∅] = ∅,

(F ◦ G )[A] =
∑

π∈P[A]

F [π]×
∏
B∈π

G [B]
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Substitution

Example:

sage: E = species.SetSpecies()
sage: Eplus = species.SetSpecies(min=1)
sage: F = E(Eplus)
sage: F.structures([1,2,3]).list()

[F-structure: {{1, 2, 3}}; G-structures: [{1, 2, 3}],
F-structure: {{1, 3}, {2}}; G-structures: [{1, 3}, {2}],
F-structure: {{1, 2}, {3}}; G-structures: [{1, 2}, {3}],
F-structure: {{2, 3}, {1}}; G-structures: [{2, 3}, {1}],
F-structure: {{1}, {2}, {3}}; G-structures: [{1}, {2}, {3}]]
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Other Operations

I Functorial composition

I Derivative

I Pointing

I . . .
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Recursive definition / Implicit Equations

“A rooted tree is a root which is attached to a set of rooted trees.”

A = X · E (A)
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Recursive definition / Implicit Equations
“A binary tree is either a leaf or a pair of binary trees.”

B = X + B ∗ B

Example:

sage: B = species.CombinatorialSpecies()
sage: X = species.SingletonSpecies()
sage: B.define(X+B*B)
sage: B.structures([1,2,3]).list()
[1*(2*3),
1*(3*2),
...
(2*3)*1,
(3*2)*1]
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Generating Series

The primary tools used in the theory of species are generating
series. With each species, we can associate three different
generating series:

1. (Exponential) Generating Series

2. Isomorphism Type Generating Series

3. Cycle Index Series
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(Exponential) Generating Series

The (exponential) generating series of a species F is given by

F (x) =
∑
n≥0

fn
xn

n!

where fn is the number of elements of F [A] for any A with n
elements.

Example:

The generating series for the species of partitions is given by

P(x) =
∑
n≥0

Bn
xn

n!

where Bn are the Bell numbers.
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(Exponential) Generating Series

Example:

sage: P = species.PartitionSpecies()
sage: gs = P.generating_series()
sage: gs.coefficients(5)
[1, 1, 1, 5/6, 5/8]
sage: gs
1 + x + x^2 + 5/6*x^3 + 5/8*x^4 + O(x^5)

sage: gs.counts(5)
[1, 1, 2, 5, 15]
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Isomorphic Structures
Two structures a ∈ F [A] and b ∈ F [B] are said to be isomorphic if
there exists a bijection σ : A→ B such that

F [σ](a) = b.

Example:

sage: a
{{1, 3}, {2}}
sage: b
{{1, 2}, {3}}
sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}
sage: a.is_isomorphic(b)
True
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Isomorphic Structures

sage: P.isotypes([1,2,3,4]).list()
[{{1, 2, 3, 4}},
{{1, 2, 3}, {4}},
{{1, 2}, {3, 4}},
{{1, 2}, {3}, {4}},
{{1}, {2}, {3}, {4}}]

sage: B.isotypes([1,2,3,4]).list()
[1*(2*(3*4)),
1*((2*3)*4),
(1*2)*(3*4),
(1*(2*3))*4,
((1*2)*3)*4]
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Isomorphism Type Generating Series

The isomorphism type generating series of F is defined to be

F̃ (x) =
∑
n≥0

f̃nx
n

where f̃n is the number of non-isomorphic elements of F [A] for any
A with n elements.
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Isomorphism Type Generating Series

Example:

The isomorphism type generating series for the species of partitions
is given by

P̃(x) =
∑
n≥0

pnx
n

where pn is the number of integer partitions of n.
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Isomorphism Type Generating Series

Example:

sage: P = species.PartitionSpecies()
sage: itgs = P.isotype_generating_series()
sage: itgs.coefficients(5)
[1, 1, 2, 3, 5]
sage: itgs
1 + x + 2*x^2 + 3*x^3 + 5*x^4 + O(x^5)
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Generating Series

The generating series play nicely with the operations on species:

(F + G )(x) = F (x) + G (x), ˜(F + G )(x) = F̃ (x) + G̃ (x)

(F · G )(x) = F (x) · G (x), (̃F · G )(x) = F̃ (x) · G̃ (x)

(F ◦ G )(x) = F (G (x))
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Putting It Together

Rooted Trees

sage: E = species.SetSpecies()
sage: X = species.SingletonSpecies()
sage: A = species.CombinatorialSpecies()
sage: A.define(X*E(A))
sage: A.isotype_generating_series().coefficients(10)
[0, 1, 1, 2, 4, 9, 20, 48, 115, 286]
sage: sloane_find(_)[0][1]
Searching Sloane’s online database...

’Number of rooted trees with n nodes
(or connected functions with a fixed point).’
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Weighted Species: Ordered Trees

sage: q = QQ[’q’].gen()
sage: leaf = species.SingletonSpecies()
sage: internal_node = species.SingletonSpecies(weight=q)
sage: L = species.LinearOrderSpecies(min=1)
sage: T = species.CombinatorialSpecies()

sage: T.define(leaf + internal_node*L(T))
sage: T.isotype_generating_series().coefficient(4)
q^3 + 3*q^2 + q
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Future Work (This Week!)

I Automatically recognizing recurrence relations

I More efficient random generation

I Multisort species

I Plugging in data structures into the generation routines
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Thanks!
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