Decomposable Objects and Combinatorial
Species

Mike Hansen

University of Washington

October 11, 2008

Mike Hansen Decomposable Objects and Combinatorial Species

Decomposable Objects

What are decomposable objects?

Mike Hansen Decomposable Objects and Combinatorial Species

Decomposable Objects

What are decomposable objects?

Decomposable objects include trees, graphs, functions, relations,
permutations, sets, subsets, cycles, lists, and much more...

Mike Hansen Decomposable Objects and Combinatorial Species

Decomposable Objects

What do we want to do with decomposable objects?

Count them.
Generate them.

Generate random ones.

vV v v Y

Mike Hansen Decomposable Objects and Combinatorial Species

Decomposable Objects

What do we want to do with decomposable objects?

Count them.
Generate them.

Generate random ones.

vV v v Y

(in both the labeled and unlabeled cases)

Mike Hansen Decomposable Objects and Combinatorial Species

Existing Software

» combstruct in Maple (Project Algo, Mishna, Murray, and
Zimmermann)

» CS in MuPAD (Project Algo, Corteel, Denis, Dutour, Sarron,
and Zimmerman)

» decomposableObject in MUPAD-CoMBINAT (Cellier, Hivert,
and Thiéry)

» ALDOR-COMBINAT in Aldor/FriCAS (Hemmecke and Rubey)

Mike Hansen Decomposable Objects and Combinatorial Species

ALDOR-COMBINAT

» Started in 2006 by Ralf Hemmecke and Martin Rubey.

» Written as a fully literate program in the language of Aldor
that tries to stay as close as possible to the theory of species
as outlined in “Combinatorial Species and Tree-like
Structures” by Bergeron, Labelle, and Leroux.

» Can be found at http://www.risc.uni-
linz.ac.at/people/hemmecke/aldor/combinat/

Mike Hansen Decomposable Objects and Combinatorial Species

What are species?

Let B be the category of finite sets with bijections. A species is
simply a functor
F:B— B.

Mike Hansen Decomposable Objects and Combinatorial Species

What are species?

» For every finite set A, we get a finite set F[A] whose elements
are said to be the structures of F on the underlying set A.

Mike Hansen Decomposable Objects and Combinatorial Species

What are species?

» For each bijection o : A — B, we have a bijection
Flo] : F[A] — F[B]

which is called the transport of F-structures along o.

OR
. a c
A-tenadest (84, 8
} \'}\:/' ! | ! ? - ®f
o | ://\:‘\ ! ~ - ‘: : -
A [e
AR L~ e
A =A{a,b,c,d,e, f} o e ! b
f. oc ®
\ J

Mike Hansen Decomposable Objects and Combinatorial Species

What are species?

» F is functorial, which means that
1. F[IdA] = IdF[A]
2. Flo] = F[Y]Flo].

Mike Hansen Decomposable Objects and Combinatorial Species

Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A.

Mike Hansen Decomposable Objects and Combinatorial Species

Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A. For example,

P{1,2,3}] = [{{1,2,3}}, {{1,3},{2}}, {{1,2}, {3}},
{2,335 {1}, ({1 {23, {3}}]-

Mike Hansen Decomposable Objects and Combinatorial Species

Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A. For example,

P{1,2,3}] = [{{1,2,3}}, {{1,3},{2}}, {{1,2}, {3}},
{{2,3}, {1}, {1}, {2}, {3}}]-

Let 0 : {1,2,3} — {1,2,3} be the bijection which sends 2 to 3
and 3 to 2. Then,

Plo]({{1,3},{2}}) = {{1, 2}, {3}}

Mike Hansen Decomposable Objects and Combinatorial Species

Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).1list()
[{{1, 2, 3}},

{{1, 3}, {23},

{{1, 2}, {33},

{{2, 3}, {133,

{{13}, {2}, {3}}]

Mike Hansen Decomposable Objects and Combinatorial Species

Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).1list()
[{{1, 2, 3}},

{{1, 3}, {23},

{{1, 2}, {33},

{{2, 3}, {133,

{{13}, {2}, {3}}]

sage: a = _[1]; a
{{1, 3}, {23}
sage: a.transport(PermutationGroupElement ((2,3)))

{{1, 2}, {3}}

Mike Hansen Decomposable Objects and Combinatorial Species

Building Blocks

Partitions
Permutations
Cycles

Sets

Subsets

Linear orders (sequences)

vV V. vV VvV vV Vv Y

Singleton and empty set species

Mike Hansen Decomposable Objects and Combinatorial Species

Addition

(F+ G)[A] = F[A] + G[A]

The sum on the right side corresponds to a disjoint union.

Mike Hansen Decomposable Objects and Combinatorial Species

Addition

(F 4+ G)[A] = F[A] + G[A]
The sum on the right side corresponds to a disjoint union.

Example:
sage: P = species.PartitionSpecies()

sage: P.structures([1,2]).1ist()
({{1, 23}, {{1}, {2}}]

sage: F = P+P

sage: F.structures([1,2]).1ist()
({1, 23}, {{1}, {2}}, {{1, 2}}, {{1}, {23}}]

Mike Hansen Decomposable Objects and Combinatorial Species

Multiplication

(F-G)Al=)_ F[B]xG[C]

B+C=A

Mike Hansen Decomposable Objects and Combinatorial Species

Multiplication

Example:

sage: P = species.PartitionSpecies()
sage: F = PxP
sage: F.structures([1,2]).1ist()

({I={{1, 2}},
{{{1}, {2}3,
{{133+{{2}},
{{23+{{1}},
{{1, 23}*{},
{{1}, {2}}*{}]

Mike Hansen Decomposable Objects and Combinatorial Species

Substitution

When G[0] = 0,

(FolAl= 3 Flrlx [] GI8]

mEP[A] Ber

Mike Hansen Decomposable Objects and Combinatorial Species

Substitution

Example:

sage: E = species.SetSpecies()

sage: Eplus = species.SetSpecies(min=1)
sage: F = E(Eplus)

sage: F.structures([1,2,3]).1list()

[F-structure: {{1, 2, 3}}; G-structures: [{1, 2, 3}],
F-structure: {{1, 3}, {2}}; G-structures: [{1, 3}, {2}],
F-structure: {{1, 2}, {3}}; G-structures: [{1, 2}, {3}],
F-structure: {{2, 3}, {1}}; G-structures: [{2, 3}, {11}],
F-structure: {{1}, {2}, {3}}; G-structures: [{1}, {2}, {3}]]

Mike Hansen Decomposable Objects and Combinatorial Species

Other Operations

Functorial composition
Derivative

Pointing

Mike Hansen Decomposable Objects and Combinatorial Species

Recursive definition / Implicit Equations

“A rooted tree is a root which is attached to a set of rooted trees.”

Mike Hansen Decomposable Objects and Combinatorial Species

Recursive definition / Implicit Equations
“A binary tree is either a leaf or a pair of binary trees.”

B=X+BxB

Mike Hansen Decomposable Objects and Combinatorial Species

Recursive definition / Implicit Equations
“A binary tree is either a leaf or a pair of binary trees.’

B=X+B=xB

Example:

B = species.CombinatorialSpecies()
sage: X = species.SingletonSpecies()
sage: B.define(X+B*B)
sage: B.structures([1,2,3]).1list()
[1x(2%3),

1% (3%2),

sage:

(2%3) *1,
(3%2) *1]

Mike Hansen Decomposable Objects and Combinatorial Species

Generating Series

The primary tools used in the theory of species are generating
series. With each species, we can associate three different
generating series:

1. (Exponential) Generating Series
2. Isomorphism Type Generating Series

3. Cycle Index Series

Mike Hansen Decomposable Objects and Combinatorial Species

(Exponential) Generating Series

The (exponential) generating series of a species F is given by
Xn
Fi)=>_ i
n>0

where f, is the number of elements of F[A] for any A with n
elements.

Mike Hansen Decomposable Objects and Combinatorial Species

(Exponential) Generating Series

The (exponential) generating series of a species F is given by
Xn
Fi)=>_ i
n>0

where f, is the number of elements of F[A] for any A with n
elements.

Example:

The generating series for the species of partitions is given by

P(x)=>" B,,);—:

n>0

where B, are the Bell numbers.

Mike Hansen Decomposable Objects and Combinatorial Species

(Exponential) Generating Series

Example:

sage: P = species.PartitionSpecies()
sage: gs = P.generating_series()

sage: gs.coefficients(5)

(1, 1, 1, 5/6, 5/8]

sage: gs

1+ x+ x72+ 5/6%x"3 + 5/8+x"4 + 0(x75)

sage: gs.counts(b)
(1, 1, 2, 5, 15]

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphic Structures

Two structures a € F[A] and b € F[B] are said to be isomorphic if
there exists a bijection 0 : A — B such that

Flo](a) = b.

Example:

sage: a
{{1, 3}, {2}}

sage: b

{{1, 2}, {3}}

sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}

sage: a.is_isomorphic(b)

True

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphic Structures

sage: P.isotypes([1,2,3,4]).1ist()
{{1, 2, 3, 4}},

{{1, 2, 3}, {431},

{{1, 2}, {3, 4}1},

{{1, 2}, {3}, {4},

{13}, {2}, {3}, {4}}]

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphic Structures

sage: P.isotypes([1,2,3,4]).1ist()
{{1, 2, 3, 4}},

{{1, 2, 3}, {431},

{{1, 2}, {3, 4}1},

{{1, 2}, {3}, {4},

{13}, {2}, {3}, {4}}]

sage: B.isotypes([1,2,3,4]).1ist()
[1%(2%(3%4)),

1% ((2%3)*4) ,

(1%2) % (3%4) ,

(1% (2%3)) *4,

((1%2) *3) *4]

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphism Type Generating Series

The isomorphism type generating series of F is defined to be

I:_(X) = Z fox"

n>0

where f, is the number of non-isomorphic elements of F[A] for any
A with n elements.

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphism Type Generating Series

Example:
The isomorphism type generating series for the species of partitions

is given by
P(x) = Z pnx"
n>0

where p, is the number of integer partitions of n.

Mike Hansen Decomposable Objects and Combinatorial Species

Isomorphism Type Generating Series

Example:

sage: P = species.PartitionSpecies()

sage: itgs = P.isotype_generating_series()
sage: itgs.coefficients(5)

(1, 1, 2, 3, 5]

sage: itgs

1+ x + 2%x™2 + 3%x"3 + 5*x"4 + 0(x"5)

Mike Hansen Decomposable Objects and Combinatorial Species

Generating Series
The generating series play nicely with the operations on species:

—_——

(F + G)(x) = F(x) + G(x), (F + G)(x) = F(x) + G(x)

(F- G)(x) = F(x) - G(x), (F - G)(x) = F(x) - G(x)

(FoG)(x) = F(G(x))

Mike Hansen Decomposable Objects and Combinatorial Species

Putting It Together

Rooted Trees

sage: E = species.SetSpecies()

sage: X = species.SingletonSpecies()

sage: A = species.CombinatorialSpecies()

sage: A.define(X*E(A))

sage: A.isotype_generating_series().coefficients(10)

(0, 1, 1, 2, 4, 9, 20, 48, 115, 286]
sage: sloane_find(_) [0][1]
Searching Sloane’s online database...

’Number of rooted trees with n nodes
(or connected functions with a fixed point).’

Mike Hansen Decomposable Objects and Combinatorial Species

Weighted Species: Ordered Trees

sage: q = QQ[’q’].gen()

sage: leaf = species.SingletonSpecies()

sage: internal_node = species.SingletonSpecies(weight=q)
sage: L = species.LinearOrderSpecies(min=1)

sage: T = species.CombinatorialSpecies()

sage: T.define(leaf + internal_nodexL(T))

sage: T.isotype_generating_series().coefficient(4)
Q3 +3%¥q"2 + q

Mike Hansen Decomposable Objects and Combinatorial Species

Future Work (This Week!)

» Automatically recognizing recurrence relations
» More efficient random generation
» Multisort species

» Plugging in data structures into the generation routines

Mike Hansen Decomposable Objects and Combinatorial Species

Thanks!

Mike Hansen Decomposable Objects and Combin

ial Species

