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Decomposable Objects

What are decomposable objects?
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Decomposable Objects

What are decomposable objects?

Decomposable objects include trees, graphs, functions, relations,
permutations, sets, subsets, cycles, lists, and much more...
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Decomposable Objects

What do we want to do with decomposable objects?

Count them.
Generate them.

Generate random ones.

vV v v Y
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Decomposable Objects

What do we want to do with decomposable objects?

Count them.
Generate them.

Generate random ones.

vV v v Y

(in both the labeled and unlabeled cases)
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Existing Software

» combstruct in Maple (Project Algo, Mishna, Murray, and
Zimmermann)

» CS in MuPAD (Project Algo, Corteel, Denis, Dutour, Sarron,
and Zimmerman)

» decomposableObject in MUPAD-CoMBINAT (Cellier, Hivert,
and Thiéry)

» ALDOR-COMBINAT in Aldor/FriCAS (Hemmecke and Rubey)
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ALDOR-COMBINAT

» Started in 2006 by Ralf Hemmecke and Martin Rubey.

» Written as a fully literate program in the language of Aldor
that tries to stay as close as possible to the theory of species
as outlined in “Combinatorial Species and Tree-like
Structures” by Bergeron, Labelle, and Leroux.

» Can be found at http://www.risc.uni-
linz.ac.at/people/hemmecke/aldor/combinat/
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What are species?

Let B be the category of finite sets with bijections. A species is
simply a functor
F:B— B.
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What are species?

» For every finite set A, we get a finite set F[A] whose elements
are said to be the structures of F on the underlying set A.
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What are species?

» For each bijection o : A — B, we have a bijection
Flo] : F[A] — F[B]

which is called the transport of F-structures along o.
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What are species?

» F is functorial, which means that
1. F[IdA] = IdF[A]
2. Flo] = F[Y]Flo].
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Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A.
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Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A. For example,

P{1,2,3}] = [{{1,2,3}}, {{1,3},{2}}, {{1,2}, {3}},
{2,335 {1}, ({1 {23, {3}}]-
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Example: Partition Species

We define the species of partitions P by letting P[A] be all set
partitions of A. For example,

P{1,2,3}] = [{{1,2,3}}, {{1,3},{2}}, {{1,2}, {3}},
{{2,3}, {1}, {1}, {2}, {3}}]-

Let 0 : {1,2,3} — {1,2,3} be the bijection which sends 2 to 3
and 3 to 2. Then,

Plo]({{1,3},{2}}) = {{1, 2}, {3}}
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Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).1list()
[{{1, 2, 3}},

{{1, 3}, {23},

{{1, 2}, {33},

{{2, 3}, {133,

{{13}, {2}, {3}}]
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Example: Partition Species

sage: P = species.PartitionSpecies()
sage: P.structures([1,2,3]).1list()
[{{1, 2, 3}},

{{1, 3}, {23},

{{1, 2}, {33},

{{2, 3}, {133,

{{13}, {2}, {3}}]

sage: a = _[1]; a
{{1, 3}, {23}
sage: a.transport(PermutationGroupElement ((2,3)))

{{1, 2}, {3}}
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Building Blocks

Partitions
Permutations
Cycles

Sets

Subsets

Linear orders (sequences)

vV V. vV VvV vV Vv Y

Singleton and empty set species
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Addition

(F+ G)[A] = F[A] + G[A]

The sum on the right side corresponds to a disjoint union.
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Addition

(F 4+ G)[A] = F[A] + G[A]
The sum on the right side corresponds to a disjoint union.

Example:
sage: P = species.PartitionSpecies()

sage: P.structures([1,2]).1ist()
({{1, 23}, {{1}, {2}}]

sage: F = P+P

sage: F.structures([1,2]).1ist()
({1, 23}, {{1}, {2}}, {{1, 2}}, {{1}, {23}}]
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Multiplication

(F-G)Al= )_ F[B]xG[C]

B+C=A
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Multiplication

Example:

sage: P = species.PartitionSpecies()
sage: F = PxP
sage: F.structures([1,2]).1ist()

({I={{1, 2}},
{{{1}, {2}3,
{{133+{{2}},
{{23+{{1}},
{{1, 23}*{},
{{1}, {2}}*{}]
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Substitution

When G[0] = 0,

(FolAl= 3 Flrlx [] GI8]

mEP[A] Ber
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Substitution

Example:

sage: E = species.SetSpecies()

sage: Eplus = species.SetSpecies(min=1)
sage: F = E(Eplus)

sage: F.structures([1,2,3]).1list()

[F-structure: {{1, 2, 3}}; G-structures: [{1, 2, 3}],
F-structure: {{1, 3}, {2}}; G-structures: [{1, 3}, {2}],
F-structure: {{1, 2}, {3}}; G-structures: [{1, 2}, {3}],
F-structure: {{2, 3}, {1}}; G-structures: [{2, 3}, {11}],
F-structure: {{1}, {2}, {3}}; G-structures: [{1}, {2}, {3}]]
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Other Operations

Functorial composition
Derivative

Pointing
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Recursive definition / Implicit Equations

“A rooted tree is a root which is attached to a set of rooted trees.”
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Recursive definition / Implicit Equations
“A binary tree is either a leaf or a pair of binary trees.”

B=X+BxB
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Recursive definition / Implicit Equations
“A binary tree is either a leaf or a pair of binary trees.’

B=X+B=xB

Example:

B = species.CombinatorialSpecies()
sage: X = species.SingletonSpecies()
sage: B.define(X+B*B)
sage: B.structures([1,2,3]).1list()
[1x(2%3),

1% (3%2),

sage:

(2%3) *1,
(3%2) *1]
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Generating Series

The primary tools used in the theory of species are generating
series. With each species, we can associate three different
generating series:

1. (Exponential) Generating Series
2. Isomorphism Type Generating Series

3. Cycle Index Series
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(Exponential) Generating Series

The (exponential) generating series of a species F is given by
Xn
Fi)=>_ i
n>0

where f, is the number of elements of F[A] for any A with n
elements.
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(Exponential) Generating Series

The (exponential) generating series of a species F is given by
Xn
Fi)=>_ i
n>0

where f, is the number of elements of F[A] for any A with n
elements.

Example:

The generating series for the species of partitions is given by

P(x)=>" B,,);—:

n>0

where B, are the Bell numbers.
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(Exponential) Generating Series

Example:

sage: P = species.PartitionSpecies()
sage: gs = P.generating_series()

sage: gs.coefficients(5)

(1, 1, 1, 5/6, 5/8]

sage: gs

1+ x+ x72+ 5/6%x"3 + 5/8+x"4 + 0(x75)

sage: gs.counts(b)
(1, 1, 2, 5, 15]
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Isomorphic Structures

Two structures a € F[A] and b € F[B] are said to be isomorphic if
there exists a bijection 0 : A — B such that

Flo](a) = b.

Example:

sage: a
{{1, 3}, {2}}

sage: b

{{1, 2}, {3}}

sage: a.transport(PermutationGroupElement((2,3)))
{{1, 2}, {3}}

sage: a.is_isomorphic(b)

True
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Isomorphic Structures

sage: P.isotypes([1,2,3,4]).1ist()
{{1, 2, 3, 4}},

{{1, 2, 3}, {431},

{{1, 2}, {3, 4}1},

{{1, 2}, {3}, {4},

{13}, {2}, {3}, {4}}]
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Isomorphic Structures

sage: P.isotypes([1,2,3,4]).1ist()
{{1, 2, 3, 4}},

{{1, 2, 3}, {431},

{{1, 2}, {3, 4}1},

{{1, 2}, {3}, {4},

{13}, {2}, {3}, {4}}]

sage: B.isotypes([1,2,3,4]).1ist()
[1%(2%(3%4)),

1% ((2%3)*4) ,

(1%2) % (3%4) ,

(1% (2%3) ) *4,

((1%2) *3) *4]
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Isomorphism Type Generating Series

The isomorphism type generating series of F is defined to be

I:_(X) = Z fox"

n>0

where f, is the number of non-isomorphic elements of F[A] for any
A with n elements.
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Isomorphism Type Generating Series

Example:
The isomorphism type generating series for the species of partitions

is given by
P(x) = Z pnx"
n>0

where p, is the number of integer partitions of n.
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Isomorphism Type Generating Series

Example:

sage: P = species.PartitionSpecies()

sage: itgs = P.isotype_generating_series()
sage: itgs.coefficients(5)

(1, 1, 2, 3, 5]

sage: itgs

1+ x + 2%x™2 + 3%x"3 + 5*x"4 + 0(x"5)
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Generating Series
The generating series play nicely with the operations on species:

—_——

(F + G)(x) = F(x) + G(x), (F + G)(x) = F(x) + G(x)

(F- G)(x) = F(x) - G(x), (F - G)(x) = F(x) - G(x)

(FoG)(x) = F(G(x))
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Putting It Together

Rooted Trees

sage: E = species.SetSpecies()

sage: X = species.SingletonSpecies()

sage: A = species.CombinatorialSpecies()

sage: A.define(X*E(A))

sage: A.isotype_generating_series().coefficients(10)

(0, 1, 1, 2, 4, 9, 20, 48, 115, 286]
sage: sloane_find(_) [0][1]
Searching Sloane’s online database...

’Number of rooted trees with n nodes
(or connected functions with a fixed point).’
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Weighted Species: Ordered Trees

sage: q = QQ[’q’].gen()

sage: leaf = species.SingletonSpecies()

sage: internal_node = species.SingletonSpecies(weight=q)
sage: L = species.LinearOrderSpecies(min=1)

sage: T = species.CombinatorialSpecies()

sage: T.define(leaf + internal_nodexL(T))

sage: T.isotype_generating_series().coefficient(4)
Q3 +3%¥q"2 + q
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Future Work (This Week!)

» Automatically recognizing recurrence relations
» More efficient random generation
» Multisort species

» Plugging in data structures into the generation routines
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Thanks!
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