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Gröbner bases

A = k[X ] a polynomial ring in n variables. I an ideal. M the
monoid of the power products of A.

Choose a total ordering on M, monoid compatible, and noetherian
(i.e. 1 is the minimum). Examples: Lex, DevRevLex, block
orderings.

Define the map Lpp : A \ {0} → M associating to each polynomial
its leading power-product. Its image is the initial ideal, and is a
monoid ideal. Its complementary is the staircase. A (reduced)
Gröbner basis is a set of polynomials whose Lpp minimally
generate the initial ideal, (and whose tails are in the staircase).
The reduced Gröbner basis is unique, once the ordering is fixed.

The staircase is a basis in the quotient A/I , through division by
the Gröbner basis one can algorithmically represent every element
of the quotient as linear combination of the basis elements.
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Integer lattices

An integer lattice is a subgroup L ⊆ Zn, with the metric induced
by the euclidean metric.

Every lattice is isomorphic (as group) to a Zr , r being its rank; it
has hence a (non-unique) basis, that can be seen as an integer
matrix (traditionally, the basis elements are the matrix rows);
full-rank lattices have a determinant, that is the cardinality of
Zn/L.

The Shortest Vector Problem (SVP) and Closest Vector Problem
(CVP) are NP-hard.

The LLL reduction algorithm, and its BKZ variant allow to find in
polynomial time approximate SVP and CVP, up to an exponential
factor. In practice, the algorithms perform much better than the
theoretical result, both in the running time and the approximation
of the result.

Increasing the dimension however the problems become unfeasible
for sufficiently high dimension.
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Public key cryptography

In public key cryptography a one has a message space M and a
cryptogram space C , two key spaces K and H, a randomizing
space R, and algorithms for encryption ε : M × R × K → C , and
decryption δ : C × K ′ → R; one has also an algorithm to construct
key pairs (k, k ′ ∈ K × K ′ such that ∀r δ(ε(m, k, r), k ′) = m
(probabilistically in some cases).

Finding a matching key k ′ from k (key attack), or a message m
from the cryptogram c and the public key k (message attack)
should be unfeasible.
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Integer lattices and Public key cryptography

Integer lattices are used in public key cryptography: as tools to
break codes (Chor-Rivest, Merkle-Hellmann, RSA with small
private exponent) but also in the definition of cryptosystems.

In most cryptosystems with lattices, the set M is a set of “small”
elements of Zn, the set K ′ is a set of lattices, that have a “secret”
structure; K is the same, with the secret structure hidden, usually
giving a different lattice basis.

Let k ∈ K , then R = k sends (m, r , k) into of m + r , and the
secret structure of k is used in the decryption algorithm.

We examine now three such cryptosystems:
GGH, McEliece-Niederreiter, NTRU.
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GGH (Goldreich-Goldwasser-Halevi)

In GGH, (the security-equivalent Micciancio variant) a lattice M
has a secret basis that is almost orthogonal; recovering the basis
(or an equivalent one) is hard; a message is a vector with small
components, and is encrypted adding to it a lattice element.

Decryption is made finding the equivalent point in the fundamental
parallelogram with respect to the secret basis. It works correctly if
the message is sufficiently small and the basis is sufficiently
orthogonal (if the Hadamard bound is nearly attained).
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McEliece-Niederreiter

In McEliece, (the security-equivalent Niederreiter variant) the
private key E is a Goppa error-correcting code in Z/p; the public
key is E concealed by a change of variables. A message is a vector
of small Hamming weight; to encrypt, a random element of E is
added to it. Decryption is made recovering the error using the key
equation, that needs the secret change of variables.

Not knowing the Goppa structure, an attacker can only proceed
with generic algorithms, inefficient since the problem is
NP-complete.

Remark that a Zp vector space lifted back to a Z-module is a
lattice. Hence this is a lattice cryptosystem too. The difference
wiith other lattice cryptosystems is the use of the Hamming
distance instead of the Euclidean distance.
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NTRU

In NTRU, in A = Zq[X ]/(X n − 1) the public key is h = pg/f ,
where g , f are “small” polynomials (with small coefficients and
small support, i.e. small Hamming weight; p is a public small
element, e.g. p = 2); a message m is a small polynomial, and is
encrypted as c = rh + m. r being a random small polynomial.

Everything can be seen in the submodule M ⊆ A2 generated by
((q, 0)(h, 1)): (g , f ) is a small element of M (recovering it breaks
the key), and (m, r) is short and equivalent mod M to (c , 0). Both
are hard to find, for suitable choice of the parameters.
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Lattice cryptography is fashionable!

A few years ago, quantum computing has been introduced. A
quantum computer can use quantum phenomena to perform
exponentially many computations in polynomial time, and
algorithms have been found that can factor and solve discrete
logarithms in polynomial time. In a breakthrough success, the
largest existing quantum computer has succeeded in factoring this
big composite number:

15

Hence alternatives to RSA and Diffie-Hellman have become urgent.
Lattice cryptography is one for the front-runners in this race.
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Gröbner bases and Public key cryptography

Of course, Gröbner bases can be used in cryptoanalysis, and have
been used successfully. We are instead interested mainly in the use
of Gröbner bases in the design of public key cryptosystems.

The basic idea that many people had is the following:

Let I ⊆ A = k[X ] be an ideal, for which we know a Gröbner basis,
and publish a set F = {fi} of elements of I (a special case is when
I is maximal, and a Gröbner basis is a solution of {fi = 0}).

Encryption of an element m ∈ A is done as m +
∑

gi fi , the gi

being chosen adequately, and m can be recovered through normal
form computation if it is a linear combination of staircase elements.

This turned out to be a very bad idea:
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The argument

The main point of the paper is that the hardness of computing the
Gröbner basis (that is doubly exponential in the worst case) cannot
be used, since you don’t need a Gröbner basis to decrypt: you only
need to guess the gi that have been used in the encryption, and
this can be made by linear algebra. Cracking the message is in the
same complexity class of encrypting it.
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A list of failures, one main attack

Several attempts have been made to find very sparse systems,
always based on the hardness of an underlying problem. And all
the attempts have been attacked through the message. A list of
attempts contains

I Fellows and Koblitz “Polly Cracker” aka “CA crypto” (CA
stands both for California and Combinatorial-Algebraic). Two
examples, based on graph 3-coloring and graph perfect code.
Many variables, polynomials with 2 to 4 monomials of
degree 2.
They fail both on the key (it is not known how to obtain hard
solved instances of the combinatorial problems) and on the
message (it can be recovered by a general attack described
later).

“Polly Cracker” has become the generic names of the
cryptosystems challenged by Barkee.
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I SAT-3, based on satisfiability, for which heuristic criteria for
unfeasibility exist. The key is secure, but the message is easy
to find. Many variables, polynomials with 8 monomials of
degree 3.

I EnRoot, based on roots of extremely sparse polynomial
systems, with polynomials with 3 monomials and very high
degree.

I PollyTwo, in which the ideal is a sum of two ideals, one
defined by generators, the other by a map, the ideal being its
kernel. Separating the two in a message is easy, and after the
separation the parts are recovered easily.

I Non-commutative Polly Cracker, in which the
non-commutativity adds further key attacks, and disturbs the
encoder while easing the task of the attacker.
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Enhanced differential attack

The attack, mainly due to Hofheinz and Steinwandt, reconstructs
the support of the computation using the characteristic differences
of the input polynomials.

1. Find as many 2-nomials as possible in the ideal (a 2-nomial is
a polynomial with 1 or 2 monomials, f = aXα − bX β, a
many-nomial has at least 3).

2. Compute the staircase of the ideal generated by the 2-nomials.

3. Working inside of the staircase found in point 2, start with the
support of the message, increase it adding all the “concealed
monomials”, those that can complete the support of a
monomial multiple of a basis polynomial that matches at least
two points of the support.
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Enhanced differential attack

Phase 1 can be done through a modified Buchberger algorithm, in
which a polynomial pair is considered critical if two cancellations
happen when suitably multiplied. If the polynomials are sparse,
only a few pairs appear, and after a few steps the completion is
concluded.

Phase 2 might fail if phase 1 has discovered many 2-nomials. But
a partial Gröbner bases is sufficient to attempt phase 3.

The support completion (phase 3) usually stops very soon too, and
gives a reasonably small set on which linear algebra can be
performed. But even if it does not stop, it is possible that with the
partial support the gi (in c = m +

∑
gi fi ) can be recovered. Step 2

however may fail. And of course 3 cannot work for binomial ideals.

More on binomials now.
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Gröbner bases and Integer lattices

A binomial is a difference of power products, Xα − X β. Binomial
ideals are ideals generated by binomials. The reduced Gröbner
basis of a binomial ideal is composed of binomials.

To a vector of α ∈ Zn one can associate a binomial Xα+ − X−α− ,
where α+ is sup(α, 0) and α = α+ + α−. Conversely, to Xα − X β

one associates α− β, and one can define an associated lattice.

A lattice L has an associated ideal IL, generated by its associated
binomials. Ideal binomials are variable-saturated (if xi f ∈ IL then
f ∈ IL, and the ideal associated to the associated lattice is its
saturation.
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Gröbner basis of a lattice

Through the ideal association one can define a Gröbner basis of a
lattice; it can also be defined directly, S-polynomials of binomials
correspond to difference of vectors.

The ideal generated by the binomials associated to a basis of a
lattice might be smaller than the ideal associated to the lattice;
computing the associated ideal is the harder part of the
computation of the Gröbner basis.

Saturating the ideal generated gives the associated ideal, but it is
possible to do better, with ad-hoc algorithms; the general purpose
algorithms are highly inefficient to compute with binomial ideals,
special shortcuts are possible.

F4 and F5 cannot handle binomial ideals efficiently, because of the
extreme sparsity and dimension of the matrices involved; a plain
Buchberger algorithm is better.
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Applications of binomial ideals

Binomial ideals have several applications, to algebraic geometry
(toric varieties), to combinatorics, to statistics, to biology, to linear
optimization.

In particular, with lattice Gröbner bases one can solve linear
optimization problems: given a non-homogeneous system of
equations and inequalities one can find if a solution exists, and find
the optimal solution with respect to a linear cost. The cost
function is used to define the ordering of the polynomial ring.

Computing a Gröbner basis is an intermediate step for computing a
Graver basis, an object that was defined independently in the
context of integer programming, and contains a Gröbner basis.
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Implementations of Gröbner bases for lattices

Specialized Gröbner basis algorithms for binomials and lattices
have been implemented, but are not included in any general type
computer algebra system.

There is an implementation included in CoCoA-4, but not as
efficient as a dedicated implementation called 4ti2, by Hemmeke2

and Malkin, whose core is apparently a GPL C++ library. The user
interface of 4ti2 is extremely inefficient and clumsy.

(Hint!!! Hint!!!)
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Heuristics for binomials

In particular, it has been remarked that the heuristic in the
computation of a Gröbner basis of a binomial ideal is drastically
different from the standard heuristics. In particular, a Lex Gröbner
basis is usually much easier than with a generic ideal, and is by far
the easiest ordering (although often useless for applications).

Recently we proved that for a full-dimensional lattice
(corresponding to a zero-dimensional ideal) the Hermite normal
form (that can be computed polynomially) gives almost
immediately a Lex basis. This, although trivial to prove, has come
as a big surprise. Lex basis can be computed for dimension up to a
few thousand. In contrast, a DegRevLex basis of a lattice of
dimension n in n variables generated by random vectors with
components bounded by 20 has, heuristically, about 3n elements,
and the computation seems unfeasible for n ≥ 12.
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Gröbner bases, Integer lattices and Public key cryptography

Time now to bring everything together. Polly Cracker with a
lattice Gröbner basis is a natural candidate. Call it LPC.

We have to do a few modifications to the basic Polly Cracker:

I a monomial is rewritten into one monomial. Hence every
monomial has his own history, nothing is mixed, and
coefficients are never modified; hence as messages we have to
take individual monomials. This means that the set of
messages will be a subset of the staircase (that has hence to
be quite large).

I encrypting one monomial we can have only one monomial: if
we have more, then it would be easy o match the pairs that
are combined together into one lattice element. Hence the
encryption consists in adding to a monomial a lattice element.

This puts LPC in line with the other lattice cryptosystem.
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Block lattices

I We need to be able to compute a Gröbner basis, but it has to
be difficult to recover for an attacker.

I The lattice should not have otherwise recognizable properties:
it would be liable to attacks.

I The messages have to be inside the staircase. But the set of
messages has to give out as little information as possible. It
should be invariant under permutation of variables. An
obvious choice is to allow all the vectors having components
in [0, s] for a predefined limit. We chose to experiment mainly
with s = 8. This turned out to be a good choice. This means
that the staircase has to be “fat”.

“Easy” orderings like Lex cannot be used because they are easy
also for an attacker, and they produce slim staircases in most
variables. We chose to use block lattices and block orderings.
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A block lattice

L =



• • • × × × × × ×
• • • × × × × × ×
• • • × × × × × ×
0 0 0 • • • × × ×
0 0 0 • • • × × ×
0 0 0 • • • × × ×
0 0 0 0 0 0 • • •
0 0 0 0 0 0 • • •
0 0 0 0 0 0 • • •


The Gröbner basis with respect to a block ordering can be
computed easily from the Gröbner bases of blocks on the diagonal.
The “fatness” of the staircase only depends on these blocks. The
multiplicity is equal to the determinant of the lattice, and this too
only depends on the diagonal blocks.
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How to choose the blocks

If the diagonal blocks have coprime determinants, it is easy to
recover the blocks (just consider Zn/L and split it as finite abelian
group). It is hence useful to have all the blocks with the same
determinant, and possibly each determinant being a power of a
small prime.

There is no apparent risk in choosing a power of 2 as determinant
of the blocks.

It is useful that Zn/L has a rich structure (it should not be cyclic,
but sum of many cyclic groups). This can be done easily choosing
adequately the entries with × (the entries near to the diagonal
should be multiples of a power of 2).
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Tight blocks

It is useful that the messages are a large percentage of all the
staircase elements. This means that the determinant has to be
small, and the staircase fat. For reasons that will be apparent
later, we chose blocks of dimension 4, with staircase containing
[0, 8]3 × [0, 24], i.e. one of the variables extended three times more
than the others, and determinant 215. This is tight, since
214 < 93 · 25 < 215.

Indeed, finding such lattices is difficult: randomly, one in 10000
with the given determinant satisfies the condition.
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Concealing the blocks

The initial attempt has been to conceal the block structure
changing the basis. But it is impossible to conceal the block
structure: one can compute the order in Zn/L of the coordinates,
(using the isomorphism with a sum of cyclic groups, i.e. the Smith
normal form) and the blocks reappear: the variables in the smaller
blocks have smaller order.

We have hence to introduce a change of coordinates. We will have
public coordinates with a public lattice (used for encryption) and
private coordinates with a private block lattice (used for
decryption). But the message space that is a hypercube in public
coordinates becomes a more general parallelogram in private
coordinates. This is the reason of the extra width in some
coordinates: the message space can become more elongated in
these directions.
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Stretching further

The change of coordinates (apart from a coordinate permutation)
is taken lower-triangular, with elements off the diagonal
corresponding to the variables with extra space: the l1 norm of
each column has to be at most the stretching factor.

This is how the change of variables acts on monomials: we add to
the exponent of each “fat” variable a sum of the exponents of the
other variables, according to the corresponding columns.

To have more space, (allowing a larger choice of changes of
coordinates) we multiply these coordinates by a further factor of 4;
this brings the determinant of each block to 217, and the staircase
can fit a block [0, 8]3 × [0, 99] that means that one can stretch in
that direction 12 times.
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Carlo Traverso Gröbner bases, lattices and cryptography



The keys

Now the public key is a lattice, in addition the private key has a
change of coordinates in a special form. In the private coordinates
the lattice has block form: one can compute easily a Gröbner basis
and use it for decryption.

So the trapdoor information is not the Gröbner basis, it is the
change of variables.

Of course, a permutation of variables has to be included in the
change of coordinates.
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Attacking the private key

Now the public lattice has no further information on the blocks.
Every lattice, if we allow changes of coordinates, (that, by
definition, change the lattice in a different one) can be brought in
block form. It is just enough to remark that every abelian group
with 217n elements can be represented as a chain of extensions of
groups with 217 elements.

We need to represent each one of these blocks as a lattice with a
staircase of special shape (and this can be done) but we also need
to fit the transformed message space into the staircase that we
obtained.

This is an optimization problem, that is non-linear (the change of
coordinates that we build is the inverse of the one that has to be
minimized) and has all the characteristics of a hard optimization
problem.
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Indeed, we have tried to recover the smallest block with a
linearization of the optimization problem, using lattice reduction,
and while for dimension sufficiently small (up to 24 blocks of 4
variables) often the smallest block can be retrieved, and up to 32
blocks recovering the smallest vector in that block is sometimes
possible, it has never been possible to complete the lattice
reduction for 40 blocks (dimension 160).

We conjecture that for dimension 200 (50 blocks) the key attacks
are expected to fail with any current computing power; this is also
the expectation for the message attacks, that have never
succeeded for dimension larger than 100 unless the range of the
message has been artificially reduced.
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Optimize normal form

A näıve implementation of normal form is completely inefficient.
To decrypt, one needs a clever normal form.

First, one can reduce block by block, starting from the largest
ones. It is only necessary to reduce the top part, and use linear
algebra to reconstruct the tail.

Second, to reduce one block it is better to initially find an
approximation with the Babai roundoff algorithm, then complete
the normal form with Gröbner normal form. Combining the two
one obtains the normal form very fast.

Finally, one can remark that one knows the order of the group,
that is the determinant of the lattice, hence any element exceeding
that value can be reduced modulo the determinant. This is
probably only useful to give a complexity bound through a limit on
the coefficient growth.
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encryption as normal form

Since the Lex Gröbner basis is easy to find, hence the Lex normal
form is easy too, it is always possible to find a canonical form of a
cryptogram (this is true for every lattice cryptosystem, and has
been already remarked by Micciancio).

It is esthetically pleasant to define encryption as reduction of a
message to Lex normal form, and decryption as reduction to the
block normal form in the secret coordinates. But it is also space
efficient, and can optimize message encryption.

This means that, as public key, we can provide the Lex Gröbner
basis.
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Cryptographic parameters

The resulting cryptosystem us the following parameters; given n
the lattice length:

I Message size 3.17n, cryptogram size 4.25n, expansion of a
factor of 1.37 (independent of the dimension).

I public key size 4.25n2, private key size marginally larger (the
estimate is heuristic, depending on the Gröbner bases, but
apparently less than a factor 10).

I Encryption complexity 18n3 byte multiplication (using
standard integer multiplication), decryption heuristically of the
same order.
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A prototype implementation

These are some timings in seconds for our prototype
implementation (excluding the preliminary search for blocks):

Dim. Prep. Encr. Decr.
1024 6906.56 11.51 68.89
768 2073.40 3.63 26.14
512 342.96 1.82 9.29
384 108.25 0.89 4.28
256 23.70 0.35 1.28
192 9.09 0.20 0.54
128 2.93 0.08 0.23
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Conclusions

In conclusion, we have shown how to combine Gröbner bases and
lattice to define a public key cryptosystem, that seems superior in
many respects to existing lattice cryptosystems, answering Barkee’s
challenge.

It is now Barkee’s turn to try and break our proposal.

This is joint work with M. Caboara and F. Caruso.

More material is available at

http://posso.dm.unipi.it/crypto
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