# Computing with triangular families of polynomials, an overview 

Éric Schost, ORCCA, UWO

## Triangular representations

Triangular set: $\mathbf{n}$ polynomials in $\mathbf{n}$ unknowns over a field $\mathbb{K}$, of the form

$$
\mathbf{T} \left\lvert\, \begin{aligned}
& T_{n}\left(X_{1}, \ldots, X_{n}\right) \\
& \vdots \\
& \\
& T_{2}\left(X_{1}, X_{2}\right) \\
& T_{1}\left(X_{1}\right),
\end{aligned}\right.
$$

with the conditions

- $T_{i}$ is monic in $X_{i}$,
- (optional) the ideal $\langle\mathbf{T}\rangle$ generates a separable extension of $\mathbb{K}$. The system has no multiple root.

Note:

- particular case of a zero-dimensional Gröbner basis.
- we can hide parameters in the base field.


## Representation of algebraic sets

Example: the family

$$
\begin{aligned}
& T_{2}=X_{2}^{2}+(\cdots) X_{2}+(\cdots) \\
& T_{1}=X_{1}^{3}+\cdots
\end{aligned}
$$

defines an equiprojectable variety (Aubry-Valibouze) of the form


## Some examples

## Using symmetries

Let $S(X)$ be a self-reciprocal polynomial of degree $d$, with $S(0) \neq 0$ :

$$
S(X)=X^{d} S\left(\frac{1}{X}\right) .
$$

Example: $\quad \mathbf{1} X^{6}-\mathbf{5} X^{5}+6 X^{4}-\mathbf{9} X^{3}+6 X^{2}-\mathbf{5} X+1$.
Suppose we want to factor $S$. In order to make the factorization easier, we introduce $Y=X+\frac{1}{X}$. Then,

## Using symmetries

Let $S(X)$ be a self-reciprocal polynomial of degree $d$, with $S(0) \neq 0$ :

$$
S(X)=X^{d} S\left(\frac{1}{X}\right)
$$

Example: $\quad 1 X^{6}-5 X^{5}+6 X^{4}-\mathbf{9} X^{3}+6 X^{2}-5 X+1$.
Suppose we want to factor $S$. In order to make the factorization easier, we introduce $Y=X+\frac{1}{X}$. Then,

1. consider the equations

$$
\left\{\begin{array}{l}
Y-\left(X+\frac{1}{X}\right) \\
X^{6}-5 X^{5}+6 X^{4}-9 X^{3}+6 X^{2}-5 X+1
\end{array}\right.
$$

## Using symmetries

2. change the order of $X$ and $Y$

$$
\left\{\begin{array}{l}
X^{2}-Y X+1 \\
T: Y^{3}-5 Y^{2}+3 Y+1
\end{array}\right.
$$

## Using symmetries

2. change the order of $X$ and $Y$

$$
\left\{\begin{array}{l}
X^{2}-Y X+1 \\
T: Y^{3}-5 Y^{2}+3 Y+1
\end{array}\right.
$$

3. factor $T$ (or find a single factor)

$$
\left\{\begin{array}{l}
X^{2}-Y X+1 \\
Y^{2}-4 Y-1
\end{array}\right.
$$

## Using symmetries

4. recover the factors of $S$ by changing back the order

$$
\left\{\begin{array}{l}
Y-\left(X+\frac{1}{X}\right) \\
X^{4}-4 X^{3}+X^{2}-4 X+1
\end{array}\right.
$$

## Using symmetries

4. recover the factors of $S$ by changing back the order

$$
\left\{\begin{array}{l}
Y-\left(X+\frac{1}{X}\right) \\
X^{4}-4 X^{3}+X^{2}-4 X+1
\end{array}\right.
$$

Motivation: Point-counting in genus 2 (with P. Gaudry):

- one has to factor a polynomial over a large finite field;
- for help, one knows a polynomial $R(X)$ that plays the role of $X+\frac{1}{X}$.


## Power series multiplication

The monomial ideal

$$
\mathbf{T}=\left\lvert\, \begin{gathered}
x_{n}^{d_{n}} \\
\vdots \\
x_{2}^{d_{2}} \\
x_{1}^{d_{1}}
\end{gathered}\right.
$$

is triangular.

There seems to be no straightforward algorithm to multiply modulo $\langle\mathbf{T}\rangle$ efficiently.

## Polynomial multiplication

## Reductions:

- to multiply polynomials of degree $d$, enough to multiply series $\bmod X^{d}$;
- we can take $d=2^{k}$.

From uni- to multivariate (with $d=8=2^{3}$ )

- write $X=X_{0}$, and introduce $X_{1}, X_{2}$;
- use the equality between ideals

$$
\left|\begin{array}{l}
X_{2}-X_{0}^{4} \\
X_{1}-X_{0}^{2} \\
X_{0}^{8}
\end{array}=\right| \begin{aligned}
& X_{0}^{2}-X_{1} \\
& X_{1}^{2}-X_{2} \\
& X_{2}^{2}
\end{aligned}
$$

- change of basis is free via base-2 decomposition of indices.


## Artin-Schreier (characteristic 2)

To handle degree-2 extensions

- of the form $\mathbf{F}[X] /\left\langle X^{2}-X-\alpha\right\rangle$,
- where $\operatorname{char}(\mathbf{F})=2$.

Algorithms such as Couveignes' generate towers

$$
\mathbf{T}=\left\lvert\, \begin{aligned}
& X_{n}^{2}-X_{n}-\alpha_{n}\left(X_{1}, \ldots, X_{n-1}\right) \\
& \vdots \\
& X_{2}^{2}-X_{2}-\alpha_{2}\left(X_{1}\right) \\
& X_{1}^{2}-X_{1}-\alpha_{1}
\end{aligned}\right.
$$

and we have to compute modulo such T's.

## Implicitization

The field $\mathbb{K}$ may be a rational function field $\mathbb{L}\left(Y_{1}, \ldots, Y_{r}\right)$ : leads to a representation of the generic solutions of systems of positive dimension.

## Example:

$$
\begin{aligned}
& x-\frac{1}{3} \frac{p q^{2}+q^{2}+q+p^{2} q-6 p q+p+p^{2}}{p q}, \\
& y-\frac{-}{9} \frac{(q-1+p)(-q-1+p)(-q+1+p)}{p q}, \\
& z-\frac{1}{36} \frac{(p+1)^{2}(q+1)^{2}\left(q+2 q^{2}+q^{3}+p+p q^{3}+2 p^{2}-p^{2} q^{2}+p^{3}+q p^{3}\right)^{2}}{p^{2} q^{2}(p+q+1)^{4}}
\end{aligned}
$$

is triangular in $\mathbb{L}(p, q)[x, y, z]$, and represents the "generic points" of a variety defined over $\mathbb{L}$ by equations in $\mathbb{L}[p, q, x, y, z]$ (provided by I. Kogan.)

## Implicitization

The field $\mathbb{K}$ may be a rational function field $\mathbb{L}\left(Y_{1}, \ldots, Y_{r}\right)$ : leads to a representation of the generic solutions of systems of positive dimension.

## Example:

$$
\begin{aligned}
& q-c_{0}(x, y, z, p) \\
& p^{2}+b_{1}(x, y, z) p+b_{0}(x, y, z) \\
& x^{12}+a_{11}(y, z) x^{11}+a_{10}(y, z) x^{10}+\cdots
\end{aligned}
$$

is triangular in $\mathbb{L}(y, z)[x, p, q]$, and represents the "generic points" of the same variety.

Our questions

## Previous work

```
1 9 3 2 ~ R i t t
1 9 7 8 ~ W u
    Characteristic sets (Chou, Gao, Wang, Hubert, ...)
1 9 8 7 \text { Duval}
    Constructible sets (Gomez-Diaz, Dellière, ...)
1991 Lazard
    Dimension zero
1992 Lazard
1 9 9 1 \text { Kalkbrenner}
    Regular chains (Moreno Maza, Aubry, ...)
Usually complex algorithms, especially in positive dimension.
```


## Where the question stands

Already in dimension zero...

Compared to Gröbner bases?

- harder to compute than degree bases?
- faster arithmetic?

Compared to primitive element representations?

- more structure
- slower arithmetic?


## Polynomial multiplication

Polynomial multiplication is a basic problem, with a variety of answers.

$$
(F, G) \in \mathbb{K}[x] \mapsto F G
$$

■ naive product, Karatsuba, Toom-Cook, FFT's,

- cost written $\mathrm{M}(d)$


## Matrix multiplication

Another fundamental question is matrix multiplication:

$$
(A, B) \in \mathscr{M}_{n}(\mathbb{K}) \mapsto A B
$$

An exponent of matrix multiplication is an $\omega$ such that matrix multiplication can be done in $O\left(n^{\omega}\right)$.

## Known results

Using

- divide-and-conquer,
- Newton-Hensel lifting,
- baby steps / giant steps, ...
algorithms can be designed on top of polynomial and matrix multiplication, and their complexity can be expressed in terms of $M$ and $\omega$.

Goal: develop such a family of algorithms for triangular representations. with Dahan, Jin, Li, Moreno Maza, Pascal, Wu, Xie

How:

- understand the hierarchy of problems;
- at the software level, concentrate the effort on a few key subroutines.


## Dimension zero

## Setting

Input data:

- $\mathbf{T}$ is a triangular set in $\mathbb{K}[\mathbf{X}]=\mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$;
- the natural measure of complexity is $\delta_{\mathbf{T}}=d_{1} \cdots d_{n}$, with $d_{i}=\operatorname{deg}\left(T_{i}, X_{i}\right)$.

Ideal target:

- algorithms for basic operations with $\mathbf{T}$ that would have cost $O^{\sim}\left(\delta_{\mathbf{T}}\right)$.

If this is too difficult. . .

- algorithms of complexity $O^{\sim}\left(\mathrm{F}(n) \delta_{\mathbf{T}}\right)$ or $O^{\sim}\left(\mathrm{F}(n) \delta_{\mathbf{T}}^{\mathbf{k}}\right)$.

We use $O^{\sim}()$ to denote the omission of logarithmic factors.

## Multiplication

Input: $A$ and $B$ in $\mathbb{K}[\mathbf{X}]$, reduced modulo $\langle\mathbf{T}\rangle$.
Output: $A B$ modulo $\langle\mathbf{T}\rangle$.
Cost: $O^{\sim}\left(4^{n} \delta_{\mathbf{T}}\right)$.
Algorithm: $\quad(A, B) \mapsto C=A B \in \mathbb{K}[\mathbf{X}] \mapsto C \bmod \langle\mathbf{T}\rangle$.
The reduction modulo $\langle\mathbf{T}\rangle$ extends the algorithm for univariate Euclidean division (Cook, Sieveking, Kung).

- a direct recursive approach leads to $3^{n} \mathrm{M}\left(d_{1}\right) \cdots \mathrm{M}\left(d_{n}\right) \simeq O^{\sim}\left((3 \mathbf{k})^{n} \delta_{\mathbf{T}}\right)$.
- we use a mixed dense / recursive algorithm.
- practical algorithm.

What's missing: getting rid of the exponential factor $4^{n}$.

## Inversion

Input: $A \in \mathbb{K}[\mathbf{X}]$, reduced modulo $\langle\mathbf{T}\rangle$.
Output: $A^{-1}$ modulo $\langle\mathbf{T}\rangle$ (supposing it exists), error otherwise.
Cost: $O^{\sim}\left(\mathrm{K}^{n} \delta_{\mathbf{T}}\right)$.
Algorithm: a recursive Euclidean algorithm.

- if $\langle\mathbf{T}\rangle$ is maximal, no big problem (theoretically).
- else, leading terms can be zero-divisors; this induces splittings and requires an effective multiple reduction:

$$
\mathbb{K}[\mathbf{X}] /\langle\mathbf{T}\rangle \rightarrow \mathbb{K}[\mathbf{X}] /\left\langle\mathbf{U}_{1}\right\rangle \times \cdots \times \mathbb{K}[\mathbf{X}] /\left\langle\mathbf{U}_{m}\right\rangle
$$

- complex recursive algorithm, using fast algorithms for GCD, modular reduction, coprime factorization.

What's missing: a theoretically / practically good algorithm.

## Change of order, dimension zero

Input: $\mathbf{T}$ and a target order on the variables.
Output: A triangular set $\mathbf{T}^{\prime}$ for the target order such that $\langle\mathbf{T}\rangle=\left\langle\mathbf{T}^{\prime}\right\rangle$ (if it exists).

## Cost in two variables:

- $O\left(\delta_{\mathbf{T}}^{(\omega+1) / 2}\right)$, where $\omega$ is the exponent of linear algebra.
- $O^{\sim}\left(\delta_{\mathbf{T}}\right)$ bit-cost over finite fields.


## Algorithm.

- Leverrier-like algorithm, using trace computations (Rouillier, Diaz Toca-Gonzalez Vega),
- fast modular composition (Brent-Kung),
- over finite fields, Kedlaya-Umans.

What's missing: an algorithm in $O^{\sim}\left(\mathrm{K}^{n} \delta_{\mathbf{T}}\right)$.

## Positive dimension

## Setting

Basic object:

- $V \subset \overline{\mathbb{K}}^{n}$ is a variety of dimension $r$ and degree $\Delta$, defined over $\mathbb{K}$.
- $V$ irreducible (for simplicity).

Representations of $V$ :

- Given an order on $\mathbf{X}$, there exists a partition of $\mathbf{X}$ into free variables $\mathbf{Y}$ and algebraic variables $\mathbf{Z}$, and $\mathbf{T}$ in $\mathbb{K}(\mathbf{Y})[\mathbf{Z}]$, such that
$\star \mathbf{T}$ is a triangular set for the induced order on $\mathbf{Z}$,
$\star\langle\mathbf{T}\rangle=I(V) \cdot \mathbb{K}(\mathbf{Y})[\mathbf{Z}]$.
- T describes the generic points of $V$.

Target:

- algorithms of complexity polynomial in $\Delta$, when possible.


## Degree bounds

Question: what are the degrees that can appear in $\mathbf{T}$ ?
Answer: the degrees in the algebraic variables are $\leq \Delta$; the degrees in the free variables are $\leq 2 \Delta^{2}$.

Remark: instead of $\mathbf{T}$, one can use $\mathbf{U}$, with

$$
U_{i}=\frac{\partial T_{1}}{\partial X_{1}} \cdots \frac{\partial T_{i-1}}{\partial X_{i-1}} T_{i} \quad \bmod \left\langle T_{1}, \ldots, T_{i-1}\right\rangle
$$

Then all degrees in $U_{i}$ are $\leq 2 \Delta$.

What's missing: bit-size, when $\mathbb{K}=\mathbb{Q}$.

## Lifting techniques

## Input:

- a system $\mathbf{F}=\left(F_{1}, \ldots, F_{n-r}\right)$ such that $V \subset V(\mathbf{F})$ and $V \not \subset V(\operatorname{Jac}(\mathbf{F}, \mathbf{Z}))$.
- the specialization $\mathbf{T}(0, \mathbf{Z})$ (assumed to be lucky).


## Output: T.

Algorithm: compute expansions of $\mathbf{T}$ modulo $\langle\mathbf{Y}\rangle^{2^{i}}$, and recover the coefficients in $\mathbb{K}(\mathbf{Y})$ by multivariate rational function reconstruction.

Complexity: combines the costs of most previous subroutines, not polynomial in $\Delta$.

Remark: also works to lift $\mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{Q}$.

## Change of order, positive dimension

Input: A triangular set $\mathbf{T}$ in $\mathbb{K}(\mathbf{Y})[\mathbf{Z}]$ and a target order on $\mathbf{X}$.
Output: The specialization $\mathbf{T}^{\prime}\left(0, \mathbf{Z}^{\prime}\right)$.

## Algorithm:

- finding the free / algebraic variables for the target order;
- going from $\mathbf{T}(0, \mathbf{Z})$ to $\mathbf{T}^{\prime}\left(0, \mathbf{Z}^{\prime}\right)$ changing one variable at the time.

Complexity: polynomial in $\Delta$. Combines the costs of most previous subroutines.

## Summary

As of now: the previous algorithms are sufficient to treat several applications.

- implementations of low-level algorithms in C.
- lifting and change of order in positive dimension available in Maple (RegularChains: Lemaire, Moreno Maza, Xie).

Ongoing work: solving general systems, by incremental intersection.

- previous algorithms
- (sub)resultant techniques


## Complexity of multiplication

## In one variable

Quotient and remainder: Euclidean division

$$
T, B \mapsto B \bmod T
$$

with $\operatorname{deg} T=d$ and $\operatorname{deg} B \leq 2 d$ costs $2 \mathrm{M}(d)+O(d)$ base ring operations, assuming precomputations (Cook, Sieveking, Kung).

The trick: power series division at $\infty$.
Modular multiplication: $3 \mathrm{M}(d)+O(d)$

## In several variables

Let now $\mathbf{T}$ be a triangular set of multi-degree $\left(d_{1}, \ldots, d_{n}\right)$. Plain recursive:

$$
3^{n} \mathrm{M}\left(d_{1}\right) \cdots \mathrm{M}\left(d_{n}\right)
$$

For $\mathrm{M}(d)=\mathrm{k} d \log (d) \log \log (d)$, this is essentially $(3 \mathrm{k})^{n} \delta_{\mathbf{T}}$.
Remark: this is polynomial in $\delta_{\mathbf{T}}$ (because one can assume all $d_{i} \geq 2$, so $\left.\delta_{\mathbf{T}} \geq 2^{n}\right)$.

All purpose algorithm: $O^{\sim}\left(4^{n} \delta_{\mathbf{T}}\right)$.

- mixed dense / recursive algorithm, relying on polynomial multiplication.
- we start by expanding the product and reducing it.
- so no way to get better than $2^{n} \delta_{\mathbf{T}}$.


## Practical aspects

The algorithm was implemented by Xin Li:

- C code.
- univariate FFT multiplication and Kronecker substitution.



## Beating the $4^{n}$ factor

Interpolation techniques (cf. FFT multiplication, Pan).

- When all $T_{i}$ factor into linear terms, $V(\mathbf{T})$ is a union of $\mathbb{K}$-rational points that form an equiprojectable set.
- Fast univariate evaluation and interpolation has complexity $O(\mathrm{M}(d) \log (d))$.
- Using this, one can multiply polynomials modulo $\langle\mathbf{T}\rangle$ in time

$$
O\left(\delta_{\mathbf{T}} \sum \frac{\mathrm{M}\left(d_{i}\right) \log \left(d_{i}\right)}{d_{i}}\right) \subset O^{\sim}\left(\delta_{\mathbf{T}}\right)
$$

## Homotopy techniques

When the roots are not in $\mathbb{K}$ :

- set up a homotopy with a system that splits

$$
V_{i}=\varepsilon U_{i}+(1-\varepsilon) T_{i}
$$

- $A B \bmod \langle\mathbf{T}\rangle=\operatorname{subs}(\varepsilon=1, A B \bmod \langle\mathbf{V}\rangle)$.
- the $V_{i}$ have roots in $\mathbb{K}[[\varepsilon]]$ (Hensel lemma).

Using the evaluation / interpolation algorithm over $\mathbb{K}[[\varepsilon]]$.

- complexity $O^{\sim}\left(\delta_{\mathbf{T}} r_{\mathbf{T}}\right)$
- $r_{\mathbf{T}}$ is the needed precision in $\varepsilon$


## Homotopy techniques

Nice monomial supports induce low precisions.
Univariate polynomials

- $T_{i}=T_{i}\left(X_{i}\right)$
- $r_{\mathbf{T}}=O\left(\sum d_{i}\right)$

Polynomial multiplication

- $T_{i}=X_{i}^{2}-X_{i-1}$
- $r_{\mathbf{T}}=O(n) \Longrightarrow \mathrm{M}(d)=O\left(d \log (d)^{2} \log (\log (d))^{2} \cdots\right)$

Artin-Schreier (over $\mathbf{F}_{2}$ )

- $T_{i}=X_{i}^{2}+X_{i}+\alpha_{i}\left(X_{1}, \ldots, X_{i-1}\right)$
- $r_{\mathbf{T}}=O\left(1.5^{n}\right)$.

