
Using Graph Theory to Control Fill-in for

Sparse Matrix Reduction to RREF over

Fields of non-zero characteristic

. . .

Joint work: G. Bard and R. Miller

1

Outline

• Introduction to Sparse Matrices over C,R,Q.

• Overview of Graph Theoretic Methods of Matrix Factoring:

C,R,Q

• What breaks over characteristic 6= 0?

• Graph Theory Terminology.

• Core Idea: The Damage Formula.

• Generation One: The Basic Algorithm.

• Changes for Generation Two: Co-Pivots.

• Experimental Results are missing right now.

2

Sparse Matrices over C, R, Q

• Occur in too many applications to list.

• Can be structured or otherwise.

• “Most entries” are zero.

• The “content”, denoted c, of a matrix is the number of non-

zero entries.

• β = c/mn is the density of an m× n matrix.

• β is the probability that a random element is non-zero.

• Typically 10−3 < β < 10−1.

3

The Shadow!

• The shadow of a matrix A is a matrix S with

Sij =

{
1 Aij 6= 0
0 Aij = 0

• We simply erase the non-zero entries and replace them with

1.

• The shadow graph of a square matrix A is the directed graph

(digraph) that has adjacency matrix equal to the shadow of

A.

• This means there is one vertex for each row and column, and

we draw an edge from vx to vy if and only if Axy 6= 0.

4

• If the original matrix is rectangular, then just let |V | =

max(m,n), because the storage cost of a graph is propor-

tional to |E|, and |V | does not matter much.

What is Fill-in?

• If you have a sparse matrix, and perform Gaussian Elimina-

tion in the high-school way, then

• It will become dense VERY quickly.

• Even with heuristics like “take the lowest weight row possi-

ble” at each step, it still becomes dense 1/2 way through or

so, maybe earlier.

• Since a sparse matrix can have a dense inverse, your com-

puter might not have enough memory to perform the Gaus-

sian Elimination.

• Therefore, controlling this process “fill-in” is critical.

5

Philosophy

• In order to understand why we do what we do over char

6= 0. . .

• . . . it becomes necessary to understand the char = 0 case.

• For sparse matrices, solving Ax = b is almost always done as

a Cholesky Factorization. (to be explained later).

• D. J. Rose in 1972 noticed that performing one Cholesky

step is identical to a particular graph theoretic operation on

the shadow-graph of A.

6

History

• D. J. Rose in 1972 noticed that performing one Cholesky

step is identical to a particular graph theoretic operation on

the shadow-graph of A.

• Using a simple greedy-algorithm approach, he found a way

to sequence the steps of a Cholesky factorization so as to

minimize fill-in. This is the “min-degree” algorithm, and

many papers have been written about it.

• This won’t work over characteristic 6= 0, for reasons we will

get to shortly.

7

Matrix Factorizations

• Solving A~x = ~b is usually a cubic time or n2.807 time operation

in practice, but. . .

• If A is upper-triangular, lower-triangular, a permutation ma-

trix, an orthogonal matrix, or a diagonal matrix (just as ex-

amples) then one can solve A~x = ~b in quadratic time or

better.

• Therefore, it makes sense to factor A into a product of ma-

trices of that type.

8

Examples of Factorizations

• Common Factorizations include

• A = LUP

• A = QR

• A = LDLT

• PAP−1 = LLT Cholesky Factorization (the fastest).

9

Cholesky Factorization

• If PAP−T = LLT then since LLT is symmetric and square,

so must A be also.

• Note PT = P−1.

• Turns out such a factorization exists iff A is positive semi-

definite.

• This means that QA(~x) = ~xTA~x, the quadratic form derived

from A, is never negative for any vector x. (There are other

definitions).

• For both the dense and sparse cases, this is usually the fastest

factorization.

10

• Developed by a WWI French artillery officer so that he could

factor matrices quickly during combat conditions.

Limitations of the Cholesky

• So, A must be symmetric, therefore square, as well as positive
semi-definite!

• For reasons of physics, or sometimes mathematical reasons,
e.g. The Method of Least Squares, it will be positive semi-
definite.

• What if it isn’t?

• If A is square and non-singular, then ATA will be symmetric,
positive semi-definite!

• Provided that A has a trivial null-space, then ATA will be
square, symmetric, positive semi-definite, even if A is rect-
angular!

11

• Even if A has a null-space, this can be handled.

General Recipe over C, R, Q

To solve A~x1 = ~b1, A~x2 = ~b2, . . . , A~x` = ~b`, do:

• Calculate ATA.

• Factor ATA = P−1LLTP . (The Cholesky).

• For i = 1to` do

• Solve P−1~m1 = ~bi

• Solve L~m2 = ~m1

• Solve LT ~m3 = ~m2

• Solve P~xi = ~m3

12

What breaks over Characteristic6= 0?

• The whole above procedure is predicated on the fact that

Nullspace(A) = Nullspace (ATA)

• For characteristic 6= 0 this is false.

• We can only say Nullspace(A) ⊂ Nullspace (ATA)

• Not to mention it is hard to determine the equivalent notion
of positive semi-definite because ~xTA~x ≥ 0 requires a notion
of ≥, which does not exist in finite characteristic.

• Also, over C,R,Q, no one ever developed any other ap-
proaches, since the Cholesky is so very fast in the sparse
case.

13

And now we’ll do it my way!

14

Graph Theoretic Terminology

• Let G = V,E be a directed graph or digraph.

• This means that if there is an edge from vi to vj, then there

is not necessarily an edge from vj to vi.

• We say, for an edge from vx to vy that

• vx is a parent of vy and

• vy is a child of vx

• Not only can you have many, one, or no parents/children, we

allow self-loops (edges from vx to vx and so you can be your

own parent/child.

15

What does this really mean?

• The set of vertices that are parents of vy would be all those

vx with an edge vx, vy.

• More simply, it would be each row x, such that there is a

non-zero entry in column y.

• Parent set = a column.

• The set of vertices that are children of vx would be all those

vy with an edge vx, vy.

• More simply, it would be each column y, such that there is

a non-zero entry in row x.

• Child set = a row.
16

Other Notions

• The content of the matrix is the number of edges.

• Fill-in is an increase in the number of edges.

• A self-loop is a main-diagonal element.

• A childless vertex is an empty row.

• A parentless vertex is an empty column.

17

Warm-Up: Adding two Rows

• Suppose we add two rows, e.g. row x to row z, and store
the answer in row z.

• An entry Azy of row z is non-zero after this if either Axy was
non-zero, or if Azy was non-zero.

• Of course, if Axy = −Azy then this is false, but unless we
force this, we assume it will not happen accidentally.

• (Very false over GF(2), but true with probability equal to
the size of the field, in general).

• This is the “no accidental cancellations” assumption, very
common in this topic.

18

So let’s make that assumption

• An entry Azy of row z is non-zero after this if either Axy was

non-zero, or if Azy was non-zero.

• This means that y will be a child of z after this operation if

either y was a child of x or y was a child of z.

• More plainly, we insert the set of children of x to the set of

children of z.

• The number of new elements is |children(vx)|−|children(vx)∩
children(vz)|

• We call the (net) number of new edges, i.e. number added

minus number deleted, the “damage” of an action.

19

On the Set Intersection

• We will need to calculate this: |children(vx)| − |children(vx)∩
children(vz)| extremely often.

• This was the cause of much grief!

• At first we approximated this as: |children(vx)∩children(vz)| =
0, that was bad.

• In Gaussian Elimination, you wouldn’t add row z to row x

unless they both had a non-zero in the “pivot column”. Thus

the intersection is at least one.

• Then we tried |children(vx) ∩ children(vz)| = 0.

• That’s still not quite enough!

20

Randomly Distributed Intersection

• If we assume that the ones are randomly distributed, then we
can calculate the expected value of the intersection. (This
is our second assumption).

• . . . but, . . . there are no ones to the left of column i after
the ith iteration. So, what we need is a notion of “active
submatrix density.”

• The active submatrix is from (1, i) to (m,n). There should
be i − 1 non-zeroes outside that area, and if the matrix has
content c then c − i + 1 non-zeroes inside it. Thus the “β”
of the active submatrix is:

α =
c− i+ 1

[m][n− i+ 1]
=
β − (i− 1)/mn

1− (i− 1)/n
≈

β

1− (i− 1)/n

21

• And then α2 is the probability of an entry in the active part

of the row being non-zero for both row x and row z.

• Therefore the intersection has expected size α2(n− i+ 1).

• But we know there is a shared non-zero element, so α2(n−
i) + 1.

• If that is the size of the overlap, then the damage is clearly

|children(vx)| − α2(n− i)− 1

How Does that Help?

• The damaging of adding row x to row z is:

|children(vx)| − α2(n− i)− 1

• How about pivoting on Axy. What does that mean?

• Multiply row x by the scalar A−1
xy to force Axy = 1.

• For any Azy 6= 0 with z 6= x do

– Add row z to row x.

22

The Damage of Pivoting

• If we pivot on Axy then there will be a row-add for each
non-zeor in column y, minus 1 for the pivot row itself which
doesn’t get added.

• This is |parents(vy)| − 1 row-adds.

• Then we have
(
|children(vx)| − α2(n− i)− 1

)
(|parents(vy)| − 1)

new edges.

• Ah, we said no accidental cancelations but the deliberate
ones? All of column y will go to only one non-zero element.

• Thus (|parents(vy)| − 1) edges are deleted, and so we have a
net effect of(

|children(vx)| − α2(n− i)− 2
)

(|parents(vy)| − 1)

23

Damage of Pivoting

• Then we are left with(
|children(vx)| − α2(n− i)− 2

)
(|parents(vy)| − 1)

• This is the damage of pivoting on Axy.

• Note it can be positive, zero, or negative.

24

How to Choose a Pivot?

• This is a fairly easy computation, but it would be long to

compute it for each edge in the graph.

• For Axy to be a pivot:

• Axy 6= 0 or there must be an edge from vx to vy, or vy is a child of vx.

• Nothing in row x must have been used as a pivot before.

• Nothing in column y must have been used as a pivot before.

• Maintain a linked list of unused parents, and unused children.

• Delete as you use vertices.

25

Example

• Suppose the number of unused-parents < the number of

unused-children:

• For each unused-parent vx do

• Does it have any children that are on the list: unused-children?

• If not: delete it from unused-parents.

• If so: among the children on the unused-children list, take the one vy
with the fewest parents.

• Mark the choice Axy with the damage:(
|children(vx)| − α2(n− i)− 2

)
(|parents(vy)| − 1)

26

Inner Loop

• Therefore we do that for each unused-parent. If the number

of unused children is smaller, we can swap parents/children

in the pseudocode and make an identical list.

• This gives us a list of “candidate” pivots, and their damages.

• Ah, but we had to do some non-trivial computing to get here.

• So we want the fewest number of loop runs possible!

27

Co-Pivots

• Suppose two pivot rows had non-overlapping column support.
(i.e. they never both had a one in the same column).

• Alternatively suppose two pivot columns had non-overlapping
row support. (i.e. they never had a one in the same row).

• Thus for two potential pivots Ax1,y1 and Ax2,y2 if either:

• The rows x1 and x2 are disjoint (i.e. the children of x1 and the children
of x2 are disjoint as sets).

• OR The columns y1 and y2 are disjoint (i.e. the parents of y1 and
the parents of y2 are disjoint as sets).

• Then you can pivot on Ax1,y1 and Ax2,y2 at the same time, or in either

order, and they won’t interfere with each other.

28

The Algorithm

• Each parent or child vertex nominates a parent-child pair as
a pivot, with a damage score.

• Sort those pivots by order of damage, lowest first. (some are
negative).

• Enqueue the lowest damage pivot vertex.

• For each remaining pivot:

• Will it interfere with any of the enqueued pivots?

• If not, enqueue it.

• Then update the graph based on these pivots.

29

What does Update Mean?

• This we perform exactly, not approximately.

• Suppose we pivot on Axy

• For each parent of vy (call it vz), add the children of vx to
the children of vz.

• Then remove vy from the children of vz.

• All those new children of vz also get vz added as one of their
parents.

• Finally remove vz as a parent of vy.

• Provided there are no accidental cancellations, this is an EX-
ACT update of the graph.

30

One Last Innovation

• Once a row or column becomes dense, it is unlikely to become
sparse again.

• Also, if a row is dense (a vertex with many children) or a
column is dense (a vertex with many parents) it is unlikely
to be chosen as pivot-parent or pivot-child respectively.

• Therefore, if the number of children of vx is greater than
10
√

max(m,n) or some other arbitrary threshold, then delete
it from the unused-parents list.

• If the number of parents of vy is greater than 10
√

max(m,n)
or some other arbitrary threshold, then delete it from the
unused-child list.

• These are called procrastinator nodes.

31

Experimental Results Coming Soon!

32

33

Thank you, that is all!

34

