Using Graph Theory to Control Fill-in for Sparse Matrix Reduction to RREF over Fields of non-zero characteristic

Joint work: G. Bard and R. Miller

<u>Outline</u>

- Introduction to Sparse Matrices over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$.
- Overview of Graph Theoretic Methods of Matrix Factoring: $\mathbb{C},\mathbb{R},\mathbb{Q}$
- What breaks over characteristic $\neq 0$?
- Graph Theory Terminology.
- Core Idea: The Damage Formula.
- Generation One: The Basic Algorithm.
- Changes for Generation Two: Co-Pivots.
- Experimental Results are missing right now.

Sparse Matrices over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$

- Occur in too many applications to list.
- Can be structured or otherwise.
- "Most entries" are zero.
- The "content", denoted c, of a matrix is the number of nonzero entries.
- $\beta = c/mn$ is the density of an $m \times n$ matrix.
- β is the probability that a random element is non-zero.
- Typically $10^{-3} < \beta < 10^{-1}$.

The Shadow!

• The shadow of a matrix A is a matrix S with

$$S_{ij} = \begin{cases} 1 & A_{ij} \neq 0 \\ 0 & A_{ij} = 0 \end{cases}$$

- We simply erase the non-zero entries and replace them with 1.
- The shadow graph of a square matrix A is the directed graph (digraph) that has adjacency matrix equal to the shadow of A.
- This means there is one vertex for each row and column, and we draw an edge from v_x to v_y if and only if $A_{xy} \neq 0$.

• If the original matrix is rectangular, then just let $|V| = \max(m, n)$, because the storage cost of a graph is proportional to |E|, and |V| does not matter much.

What is Fill-in?

- If you have a sparse matrix, and perform Gaussian Elimination in the high-school way, then
- It will become dense VERY quickly.
- Even with heuristics like "take the lowest weight row possible" at each step, it still becomes dense 1/2 way through or so, maybe earlier.
- Since a sparse matrix can have a dense inverse, your computer might not have enough memory to perform the Gaussian Elimination.
- Therefore, controlling this process "fill-in" is critical.

Philosophy

- In order to understand why we do what we do over char $\neq 0...$
- ... it becomes necessary to understand the char = 0 case.
- For sparse matrices, solving Ax = b is almost always done as a Cholesky Factorization. (to be explained later).
- D. J. Rose in 1972 noticed that performing one Cholesky step is identical to a particular graph theoretic operation on the shadow-graph of *A*.

History

- D. J. Rose in 1972 noticed that performing one Cholesky step is identical to a particular graph theoretic operation on the shadow-graph of *A*.
- Using a simple greedy-algorithm approach, he found a way to sequence the steps of a Cholesky factorization so as to minimize fill-in. This is the "min-degree" algorithm, and many papers have been written about it.
- This won't work over characteristic $\neq 0$, for reasons we will get to shortly.

Matrix Factorizations

- Solving $A\vec{x} = \vec{b}$ is usually a cubic time or $n^{2.807}$ time operation in practice, but...
- If A is upper-triangular, lower-triangular, a permutation matrix, an orthogonal matrix, or a diagonal matrix (just as examples) then one can solve $A\vec{x} = \vec{b}$ in quadratic time or better.
- Therefore, it makes sense to factor A into a product of matrices of that type.

Examples of Factorizations

- Common Factorizations include
- A = LUP
- A = QR
- $A = LDL^T$
- $PAP^{-1} = LL^T$ Cholesky Factorization (the fastest).

Cholesky Factorization

- If $PAP^{-T} = LL^T$ then since LL^T is symmetric and square, so must A be also.
- Note $P^T = P^{-1}$.
- Turns out such a factorization exists iff A is positive semidefinite.
- This means that $Q_A(\vec{x}) = \vec{x}^T A \vec{x}$, the quadratic form derived from A, is never negative for any vector x. (There are other definitions).
- For both the dense and sparse cases, this is usually the fastest factorization.

• Developed by a WWI French artillery officer so that he could factor matrices quickly during combat conditions.

Limitations of the Cholesky

- So, A must be symmetric, therefore square, as well as positive semi-definite!
- For reasons of physics, or sometimes mathematical reasons, e.g. The Method of Least Squares, it will be positive semidefinite.
- What if it isn't?
- If A is square and non-singular, then $A^T A$ will be symmetric, positive semi-definite!
- Provided that A has a trivial null-space, then $A^T A$ will be square, symmetric, positive semi-definite, even if A is rect-angular!

• Even if A has a null-space, this can be handled.

General Recipe over C, R, Q

To solve $A\vec{x}_1 = \vec{b}_1, A\vec{x}_2 = \vec{b}_2, \dots, A\vec{x}_\ell = \vec{b}_\ell$, do:

- Calculate $A^T A$.
- Factor $A^T A = P^{-1} L L^T P$. (The Cholesky).
- For $i = 1 to \ell$ do
 - Solve $P^{-1}\vec{m}_1 = \vec{b}_i$
 - Solve $L\vec{m}_2 = \vec{m}_1$
 - Solve $L^T \vec{m}_3 = \vec{m}_2$
 - Solve $P\vec{x}_i = \vec{m}_3$

What breaks over Characteristic \neq 0?

- The whole above procedure is predicated on the fact that Nullspace(A) = Nullspace ($A^T A$)
- For characteristic \neq 0 this is false.
- We can only say Nullspace(A) \subset Nullspace ($A^T A$)
- Not to mention it is hard to determine the equivalent notion of positive semi-definite because $\vec{x}^T A \vec{x} \ge 0$ requires a notion of \ge , which does not exist in finite characteristic.
- Also, over C, R, Q, no one ever developed any other approaches, since the Cholesky is so very fast in the sparse case.

And now we'll do it my way!

Graph Theoretic Terminology

- Let G = V, E be a directed graph or digraph.
- This means that if there is an edge from v_i to v_j , then there is not necessarily an edge from v_j to v_i .
- We say, for an edge from v_x to v_y that
- v_x is a parent of v_y and
- v_y is a child of v_x
- Not only can you have many, one, or no parents/children, we allow self-loops (edges from v_x to v_x and so you can be your own parent/child.

What does this really mean?

- The set of vertices that are parents of v_y would be all those v_x with an edge v_x, v_y .
- More simply, it would be each row x, such that there is a non-zero entry in column y.
- Parent set = a column.
- The set of vertices that are children of v_x would be all those v_y with an edge v_x, v_y .
- More simply, it would be each column y, such that there is a non-zero entry in row x.
- Child set = a row.

Other Notions

- The content of the matrix is the number of edges.
- Fill-in is an increase in the number of edges.
- A self-loop is a main-diagonal element.
- A childless vertex is an empty row.
- A parentless vertex is an empty column.

Warm-Up: Adding two Rows

- Suppose we add two rows, e.g. row x to row z, and store the answer in row z.
- An entry A_{zy} of row z is non-zero after this if either A_{xy} was non-zero, or if A_{zy} was non-zero.
 - Of course, if $A_{xy} = -A_{zy}$ then this is false, but unless we force this, we assume it will not happen accidentally.
 - (Very false over $\mathbb{GF}(2)$, but true with probability equal to the size of the field, in general).
 - This is the "no accidental cancellations" assumption, very common in this topic.

So let's make that assumption

- An entry A_{zy} of row z is non-zero after this if either A_{xy} was non-zero, or if A_{zy} was non-zero.
- This means that y will be a child of z after this operation if either y was a child of x or y was a child of z.
- More plainly, we insert the set of children of x to the set of children of z.
- The number of new elements is $|children(v_x)| |children(v_x) \cap children(v_z)|$
- We call the (net) number of new edges, i.e. number added minus number deleted, the "damage" of an action.

On the Set Intersection

- We will need to calculate this: $|children(v_x)| |children(v_x) \cap children(v_z)|$ extremely often.
- This was the cause of much grief!
- At first we approximated this as: |children(vx)∩children(vz)| =
 0, that was bad.
- In Gaussian Elimination, you wouldn't add row z to row x unless they both had a non-zero in the "pivot column". Thus the intersection is at least one.
- Then we tried $|children(v_x) \cap children(v_z)| = 0.$
- That's still not quite enough!

Randomly Distributed Intersection

- If we assume that the ones are randomly distributed, then we can calculate the expected value of the intersection. (This is our second assumption).
- ... but, ... there are no ones to the left of column *i* after the *i*th iteration. So, what we need is a notion of "active submatrix density."
- The active submatrix is from (1,i) to (m,n). There should be i-1 non-zeroes outside that area, and if the matrix has content c then c-i+1 non-zeroes inside it. Thus the " β " of the active submatrix is:

$$\alpha = \frac{c - i + 1}{[m][n - i + 1]} = \frac{\beta - (i - 1)/mn}{1 - (i - 1)/n} \approx \frac{\beta}{1 - (i - 1)/n}$$

• And then α^2 is the probability of an entry in the active part of the row being non-zero for both row x and row z.

- Therefore the intersection has expected size $\alpha^2(n-i+1)$.
- But we know there is a shared non-zero element, so $\alpha^2(n-i)+1$.
- If that is the size of the overlap, then the damage is clearly

 $|\text{children}(v_x)| - \alpha^2(n-i) - 1$

How Does that Help?

• The damaging of adding row x to row z is:

 $|\text{children}(v_x)| - \alpha^2(n-i) - 1$

- How about pivoting on A_{xy} . What does that mean?
 - Multiply row x by the scalar A_{xy}^{-1} to force $A_{xy} = 1$.
 - For any $A_{zy} \neq 0$ with $z \neq x$ do
 - Add row z to row x.

The Damage of Pivoting

- If we pivot on A_{xy} then there will be a row-add for each non-zeor in column y, minus 1 for the pivot row itself which doesn't get added.
- This is $|parents(v_y)| 1$ row-adds.
- Then we have $(|children(v_x)| \alpha^2(n-i) 1) (|parents(v_y)| 1)$ new edges.
- Ah, we said no accidental cancelations but the deliberate ones? All of column y will go to only one non-zero element.
- Thus (|parents(v_y)| − 1) edges are deleted, and so we have a net effect of

 $(|\text{children}(v_x)| - \alpha^2(n-i) - 2) (|\text{parents}(v_y)| - 1)$

Damage of Pivoting

• Then we are left with

 $\left(|\operatorname{children}(v_x)| - \alpha^2(n-i) - 2\right) \left(|\operatorname{parents}(v_y)| - 1\right)$

- This is the damage of pivoting on A_{xy} .
- Note it can be positive, zero, or negative.

How to Choose a Pivot?

- This is a fairly easy computation, but it would be long to compute it for each edge in the graph.
- For A_{xy} to be a pivot:
 - $A_{xy} \neq 0$ or there must be an edge from v_x to v_y , or v_y is a child of v_x .
 - Nothing in row x must have been used as a pivot before.
 - Nothing in column y must have been used as a pivot before.
- Maintain a linked list of unused parents, and unused children.
- Delete as you use vertices.

- Suppose the number of unused-parents < the number of unused-children:
- For each unused-parent v_x do
 - Does it have any children that are on the list: unused-children?
 - If not: delete it from unused-parents.
 - If so: among the children on the unused-children list, take the one v_y with the fewest parents.
 - Mark the choice A_{xy} with the damage: $\left(|\text{children}(v_x)| - \alpha^2(n-i) - 2\right)\left(|\text{parents}(v_y)| - 1\right)$

Inner Loop

- Therefore we do that for each unused-parent. If the number of unused children is smaller, we can swap parents/children in the pseudocode and make an identical list.
- This gives us a list of "candidate" pivots, and their damages.
- Ah, but we had to do some non-trivial computing to get here.
- So we want the fewest number of loop runs possible!

<u>Co-Pivots</u>

- Suppose two pivot rows had non-overlapping column support. (i.e. they never both had a one in the same column).
- Alternatively suppose two pivot columns had non-overlapping row support. (i.e. they never had a one in the same row).
- Thus for two potential pivots A_{x_1,y_1} and A_{x_2,y_2} if either:
 - The rows x_1 and x_2 are disjoint (i.e. the children of x_1 and the children of x_2 are disjoint as sets).
 - OR The columns y_1 and y_2 are disjoint (i.e. the parents of y_1 and the parents of y_2 are disjoint as sets).
 - Then you can pivot on A_{x_1,y_1} and A_{x_2,y_2} at the same time, or in either order, and they won't interfere with each other.

The Algorithm

- Each parent or child vertex nominates a parent-child pair as a pivot, with a damage score.
- Sort those pivots by order of damage, lowest first. (some are negative).
- Enqueue the lowest damage pivot vertex.
 - For each remaining pivot:
 - Will it interfere with any of the enqueued pivots?
 - If not, enqueue it.
- Then update the graph based on these pivots.

What does Update Mean?

- This we perform exactly, not approximately.
- Suppose we pivot on A_{xy}
- For each parent of v_y (call it v_z), add the children of v_x to the children of v_z .
- Then remove v_y from the children of v_z .
- All those new children of v_z also get v_z added as one of their parents.
- Finally remove v_z as a parent of v_y .
- Provided there are no accidental cancellations, this is an EX-ACT update of the graph.

One Last Innovation

- Once a row or column becomes dense, it is unlikely to become sparse again.
- Also, if a row is dense (a vertex with many children) or a column is dense (a vertex with many parents) it is unlikely to be chosen as pivot-parent or pivot-child respectively.
- Therefore, if the number of children of v_x is greater than $10\sqrt{\max(m,n)}$ or some other arbitrary threshold, then delete it from the unused-parents list.
- If the number of parents of v_y is greater than $10\sqrt{\max(m,n)}$ or some other arbitrary threshold, then delete it from the unused-child list.
- These are called procrastinator nodes.

Experimental Results Coming Soon!

Thank you, that is all!