Using Graph Theory to Control Fill-in for Sparse Matrix Reduction to RREF over Fields of non-zero characteristic

Joint work: G. Bard and R. Miller

Outline

- Introduction to Sparse Matrices over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$.
- Overview of Graph Theoretic Methods of Matrix Factoring: $\mathbb{C}, \mathbb{R}, \mathbb{Q}$
- What breaks over characteristic $\neq 0$?
- Graph Theory Terminology.
- Core Idea: The Damage Formula.
- Generation One: The Basic Algorithm.
- Changes for Generation Two: Co-Pivots.
- Experimental Results are missing right now.

Sparse Matrices over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$

- Occur in too many applications to list.
- Can be structured or otherwise.
- "Most entries" are zero.
- The "content", denoted c, of a matrix is the number of nonzero entries.
- $\beta=c / m n$ is the density of an $m \times n$ matrix.
- β is the probability that a random element is non-zero.
- Typically $10^{-3}<\beta<10^{-1}$.

The Shadow!

- The shadow of a matrix A is a matrix S with

$$
S_{i j}= \begin{cases}1 & A_{i j} \neq 0 \\ 0 & A_{i j}=0\end{cases}
$$

- We simply erase the non-zero entries and replace them with 1.
- The shadow graph of a square matrix A is the directed graph (digraph) that has adjacency matrix equal to the shadow of A.
- This means there is one vertex for each row and column, and we draw an edge from v_{x} to v_{y} if and only if $A_{x y} \neq 0$.
- If the original matrix is rectangular, then just let $|V|=$ $\max (m, n)$, because the storage cost of a graph is proportional to $|E|$, and $|V|$ does not matter much.

What is Fill-in?

- If you have a sparse matrix, and perform Gaussian Elimination in the high-school way, then
- It will become dense VERY quickly.
- Even with heuristics like "take the lowest weight row possible" at each step, it still becomes dense $1 / 2$ way through or so, maybe earlier.
- Since a sparse matrix can have a dense inverse, your computer might not have enough memory to perform the Gaussian Elimination.
- Therefore, controlling this process "fill-in" is critical.

Philosophy

- In order to understand why we do what we do over char $=0$. . .
- . . . it becomes necessary to understand the char $=0$ case.
- For sparse matrices, solving $A x=b$ is almost always done as a Cholesky Factorization. (to be explained later).
- D. J. Rose in 1972 noticed that performing one Cholesky step is identical to a particular graph theoretic operation on the shadow-graph of A.

History

- D. J. Rose in 1972 noticed that performing one Cholesky step is identical to a particular graph theoretic operation on the shadow-graph of A.
- Using a simple greedy-algorithm approach, he found a way to sequence the steps of a Cholesky factorization so as to minimize fill-in. This is the "min-degree" algorithm, and many papers have been written about it.
- This won't work over characteristic $\neq 0$, for reasons we will get to shortly.

Matrix Factorizations

- Solving $A \vec{x}=\vec{b}$ is usually a cubic time or $n^{2.807}$ time operation in practice, but. . .
- If A is upper-triangular, lower-triangular, a permutation matrix, an orthogonal matrix, or a diagonal matrix (just as examples) then one can solve $A \vec{x}=\vec{b}$ in quadratic time or better.
- Therefore, it makes sense to factor A into a product of matrices of that type.

Examples of Factorizations

- Common Factorizations include
- $A=L U P$
- $A=Q R$
- $A=L D L^{T}$
- $P A P^{-1}=L L^{T}$ Cholesky Factorization (the fastest).

Cholesky Factorization

- If $P A P^{-T}=L L^{T}$ then since $L L^{T}$ is symmetric and square, so must A be also.
- Note $P^{T}=P^{-1}$.
- Turns out such a factorization exists iff A is positive semidefinite.
- This means that $Q_{A}(\vec{x})=\vec{x}^{T} A \vec{x}$, the quadratic form derived from A, is never negative for any vector x. (There are other definitions).
- For both the dense and sparse cases, this is usually the fastest factorization.
- Developed by a WWI French artillery officer so that he could factor matrices quickly during combat conditions.

Limitations of the Cholesky

- So, A must be symmetric, therefore square, as well as positive semi-definite!
- For reasons of physics, or sometimes mathematical reasons, e.g. The Method of Least Squares, it will be positive semidefinite.
- What if it isn't?
- If A is square and non-singular, then $A^{T} A$ will be symmetric, positive semi-definite!
- Provided that A has a trivial null-space, then $A^{T} A$ will be square, symmetric, positive semi-definite, even if A is rectangular!
- Even if A has a null-space, this can be handled.

General Recipe over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$

To solve $A \vec{x}_{1}=\vec{b}_{1}, A \vec{x}_{2}=\vec{b}_{2}, \ldots, A \vec{x}_{\ell}=\vec{b}_{\ell}$, do:

- Calculate $A^{T} A$.
- Factor $A^{T} A=P^{-1} L L^{T} P$. (The Cholesky).
- For $i=1$ tol do
- Solve $P^{-1} \vec{m}_{1}=\vec{b}_{i}$
- Solve $\operatorname{Lm}_{2}=\vec{m}_{1}$
- Solve $L^{T} \vec{m}_{3}=\vec{m}_{2}$
- Solve $P \vec{x}_{i}=\vec{m}_{3}$

What breaks over Characteristic $\neq 0$?

- The whole above procedure is predicated on the fact that $\operatorname{Nullspace}(A)=\operatorname{Nullspace}\left(A^{T} A\right)$
- For characteristic $\neq 0$ this is false.
- We can only say Nullspace $(A) \subset \operatorname{Nullspace}\left(A^{T} A\right)$
- Not to mention it is hard to determine the equivalent notion of positive semi-definite because $\vec{x}^{T} A \vec{x} \geq 0$ requires a notion of \geq, which does not exist in finite characteristic.
- Also, over $\mathbb{C}, \mathbb{R}, \mathbb{Q}$, no one ever developed any other approaches, since the Cholesky is so very fast in the sparse case.

And now we'll do it my way!

Graph Theoretic Terminology

- Let $G=V, E$ be a directed graph or digraph.
- This means that if there is an edge from v_{i} to v_{j}, then there is not necessarily an edge from v_{j} to v_{i}.
- We say, for an edge from v_{x} to v_{y} that
- v_{x} is a parent of v_{y} and
- v_{y} is a child of v_{x}
- Not only can you have many, one, or no parents/children, we allow self-loops (edges from v_{x} to v_{x} and so you can be your own parent/child.

What does this really mean?

- The set of vertices that are parents of v_{y} would be all those v_{x} with an edge v_{x}, v_{y}.
- More simply, it would be each row x, such that there is a non-zero entry in column y.
- Parent set $=$ a column.
- The set of vertices that are children of v_{x} would be all those v_{y} with an edge v_{x}, v_{y}.
- More simply, it would be each column y, such that there is a non-zero entry in row x.
- Child set $=$ a row.

Other Notions

- The content of the matrix is the number of edges.
- Fill-in is an increase in the number of edges.
- A self-loop is a main-diagonal element.
- A childless vertex is an empty row.
- A parentless vertex is an empty column.

Warm-Up: Adding two Rows

- Suppose we add two rows, e.g. row x to row z, and store the answer in row z.
- An entry $A_{z y}$ of row z is non-zero after this if either $A_{x y}$ was non-zero, or if $A_{z y}$ was non-zero.
- Of course, if $A_{x y}=-A_{z y}$ then this is false, but unless we force this, we assume it will not happen accidentally.
- (Very false over $\mathbb{G P}(2)$, but true with probability equal to the size of the field, in general).
- This is the "no accidental cancellations" assumption, very common in this topic.

So let's make that assumption

- An entry $A_{z y}$ of row z is non-zero after this if either $A_{x y}$ was non-zero, or if $A_{z y}$ was non-zero.
- This means that y will be a child of z after this operation if either y was a child of x or y was a child of z.
- More plainly, we insert the set of children of x to the set of children of z.
- The number of new elements is \mid children $\left(v_{x}\right)|-| \operatorname{children}\left(v_{x}\right) \cap$ children $\left(v_{z}\right) \mid$
- We call the (net) number of new edges, i.e. number added minus number deleted, the "damage" of an action.

On the Set Intersection

- We will need to calculate this: \mid children $\left(v_{x}\right)|-| c h i l d r e n\left(v_{x}\right) \cap$ children $\left(v_{z}\right) \mid$ extremely often.
- This was the cause of much grief!
- At first we approximated this as: $\mid \operatorname{children}\left(v_{x}\right)$ nchildren $\left(v_{z}\right) \mid=$ 0 , that was bad.
- In Gaussian Elimination, you wouldn't add row z to row x unless they both had a non-zero in the "pivot column". Thus the intersection is at least one.
- Then we tried $\mid \operatorname{children~}\left(v_{x}\right) \cap$ children $\left(v_{z}\right) \mid=0$.
- That's still not quite enough!

Randomly Distributed Intersection

- If we assume that the ones are randomly distributed, then we can calculate the expected value of the intersection. (This is our second assumption).
- ...but, ... there are no ones to the left of column i after the i th iteration. So, what we need is a notion of "active submatrix density."
- The active submatrix is from $(1, i)$ to (m, n). There should be $i-1$ non-zeroes outside that area, and if the matrix has content c then $c-i+1$ non-zeroes inside it. Thus the " β " of the active submatrix is:

$$
\alpha=\frac{c-i+1}{[m][n-i+1]}=\frac{\beta-(i-1) / m n}{1-(i-1) / n} \approx \frac{\beta}{1-(i-1) / n}
$$

- And then α^{2} is the probability of an entry in the active part of the row being non-zero for both row x and row z.
- Therefore the intersection has expected size $\alpha^{2}(n-i+1)$.
- But we know there is a shared non-zero element, so α^{2} ($n-$ i) +1 .
- If that is the size of the overlap, then the damage is clearly

$$
\mid \text { children }\left(v_{x}\right) \mid-\alpha^{2}(n-i)-1
$$

How Does that Help?

- The damaging of adding row x to row z is:

$$
\mid \text { children }\left(v_{x}\right) \mid-\alpha^{2}(n-i)-1
$$

- How about pivoting on $A_{x y}$. What does that mean?
- Multiply row x by the scalar $A_{x y}^{-1}$ to force $A_{x y}=1$.
- For any $A_{z y} \neq 0$ with $z \neq x$ do
- Add row z to row x.

The Damage of Pivoting

- If we pivot on $A_{x y}$ then there will be a row-add for each non-zeor in column y, minus 1 for the pivot row itself which doesn't get added.
- This is \mid parents $\left(v_{y}\right) \mid-1$ row-adds.
- Then we have $\left(\left|\operatorname{children}\left(v_{x}\right)\right|-\alpha^{2}(n-i)-1\right)\left(\left|\operatorname{parents}\left(v_{y}\right)\right|-1\right)$ new edges.
- Ah, we said no accidental cancelations but the deliberate ones? All of column y will go to only one non-zero element.
- Thus (|parents $\left(v_{y}\right) \mid-1$) edges are deleted, and so we have a net effect of

$$
\left(\mid \text { children }\left(v_{x}\right) \mid-\alpha^{2}(n-i)-2\right)\left(\left|\operatorname{parents}\left(v_{y}\right)\right|-1\right)
$$

Damage of Pivoting

- Then we are left with

$$
\left(\mid \text { children }\left(v_{x}\right) \mid-\alpha^{2}(n-i)-2\right)\left(\left|\operatorname{parents}\left(v_{y}\right)\right|-1\right)
$$

- This is the damage of pivoting on $A_{x y}$.
- Note it can be positive, zero, or negative.

How to Choose a Pivot?

- This is a fairly easy computation, but it would be long to compute it for each edge in the graph.
- For $A_{x y}$ to be a pivot:
- $A_{x y} \neq 0$ or there must be an edge from v_{x} to v_{y}, or v_{y} is a child of v_{x}.
- Nothing in row x must have been used as a pivot before.
- Nothing in column y must have been used as a pivot before.
- Maintain a linked list of unused parents, and unused children.
- Delete as you use vertices.

Example

- Suppose the number of unused-parents $<$ the number of unused-children:
- For each unused-parent v_{x} do
- Does it have any children that are on the list: unused-children?
- If not: delete it from unused-parents.
- If so: among the children on the unused-children list, take the one v_{y} with the fewest parents.
- Mark the choice $A_{x y}$ with the damage:
$\left(\mid\right.$ children $\left.\left(v_{x}\right) \mid-\alpha^{2}(n-i)-2\right)\left(\left|\operatorname{parents}\left(v_{y}\right)\right|-1\right)$

Inner Loop

- Therefore we do that for each unused-parent. If the number of unused children is smaller, we can swap parents/children in the pseudocode and make an identical list.
- This gives us a list of "candidate" pivots, and their damages.
- Ah, but we had to do some non-trivial computing to get here.
- So we want the fewest number of loop runs possible!

Co-Pivots

- Suppose two pivot rows had non-overlapping column support. (i.e. they never both had a one in the same column).
- Alternatively suppose two pivot columns had non-overlapping row support. (i.e. they never had a one in the same row).
- Thus for two potential pivots $A_{x_{1}, y_{1}}$ and $A_{x_{2}, y_{2}}$ if either:
- The rows x_{1} and x_{2} are disjoint (i.e. the children of x_{1} and the children of x_{2} are disjoint as sets).
- OR The columns y_{1} and y_{2} are disjoint (i.e. the parents of y_{1} and the parents of y_{2} are disjoint as sets).
- Then you can pivot on $A_{x_{1}, y_{1}}$ and $A_{x_{2}, y_{2}}$ at the same time, or in either order, and they won't interfere with each other.

The Algorithm

- Each parent or child vertex nominates a parent-child pair as a pivot, with a damage score.
- Sort those pivots by order of damage, lowest first. (some are negative).
- Enqueue the lowest damage pivot vertex.
- For each remaining pivot:
- Will it interfere with any of the enqueued pivots?
- If not, enqueue it.
- Then update the graph based on these pivots.

What does Update Mean?

- This we perform exactly, not approximately.
- Suppose we pivot on $A_{x y}$
- For each parent of v_{y} (call it v_{z}), add the children of v_{x} to the children of v_{z}.
- Then remove v_{y} from the children of v_{z}.
- All those new children of v_{z} also get v_{z} added as one of their parents.
- Finally remove v_{z} as a parent of v_{y}.
- Provided there are no accidental cancellations, this is an EXACT update of the graph.

One Last Innovation

- Once a row or column becomes dense, it is unlikely to become sparse again.
- Also, if a row is dense (a vertex with many children) or a column is dense (a vertex with many parents) it is unlikely to be chosen as pivot-parent or pivot-child respectively.
- Therefore, if the number of children of v_{x} is greater than $10 \sqrt{\max (m, n)}$ or some other arbitrary threshold, then delete it from the unused-parents list.
- If the number of parents of v_{y} is greater than $10 \sqrt{\max (m, n)}$ or some other arbitrary threshold, then delete it from the unused-child list.
- These are called procrastinator nodes.

Experimental Results Coming Soon!

Thank you, that is all!

