Dynamical Systems in Sage

Benjamin Hutz

Department of Mathematics and Statistics Saint Louis University

> November 17, 2019 Sage-days 104

This workshop is supported by NSF grant DMS-1906266

Benjamin Hutz Dynamical Systems in Sage

OpenTickets

Ticket #	Status	Description
#28316	needs-review	is_dynamical_belyi_map()
#28292	needs-review	is_chebyshev and is_lattes
#28263	needs-work	Degree for Affine Maps
#28214	needs-review	nth-preimage tree
#28213:	needs-review	all_preperiodic_points()
#28212:	needs-review	all_periodic_points()
#28173	needs-review	Is_Newton
#28170	needs-work	use minimal fields
#25745	needs-work	Periodic Proportion Homomorphism over
		Finite Fields
#25701	needs-work	Implement Sieve algorithm for prod-
		uct_projective space
#23816	needs-review	left action of matrices on scheme points
#23806	needs-info	don't choose default affine patch on pro-
		jective point init
#23720	needs-work	Mandelbrot Set for General Polynomials
#23740		
#21129	needs-review	implementation of Arakelov-Zhang pair-
		ing for rational maps

Other Projects

- Stoll reduce cluster
- This used to take 10s!

```
sage: R.<t> = PolynomialRing(QQ)
sage: K.<v> = NumberField(t<sup>3</sup> + 16*t<sup>2</sup> - 10496*t + 94208)
sage: PS.<x,y> = ProjectiveSpace(K,1)
sage: f = DynamicalSystem([x<sup>2</sup>-29/16*y<sup>2</sup>,y<sup>2</sup>])
sage: f.rational_preperiodic_graph()
```

This fails

S.<x,y>=CC[]
F = x^3-y^3
F.reduced_form()

Should this work?

```
P.<x,y>=ProjectiveSpace(QQbar,1)
f=DynamicalSystem_projective([x<sup>2</sup>+y<sup>2</sup>,x*y])
f.sigma_invariants(1)
```

• minimizing field of definition (in all appropriate functions)

```
P.<x,y>=ProjectiveSpace(QQ,1)
f=DynamicalSystem([2*x^3+9*x^2*y-5*x*y^2-12*y^3,-6*y^3])
g=f.normal_form()
```

Wish List

Short term:

- The genus function is broken.
- Improve the speed of dynamical height function.
- Plan for what is needed to implement Berkovich space.
- compute the ramification degree of a critical point
- is_preperiodic for finite fields

Long term:

- The genus is function is broken.
- Moduli space portrait for a family of maps with marked points. (Problem, quasiprojective schemes not implemented.)
 - Weights to portraits.
 - Nice to give a portrait and get back a function/functions.
- Berkovich space.
 - Need to implement \mathbb{C}_p .
 - How to do type 4 points?
 - Center and radius.
- Convert between isomorphic finite fields.