
How to review an existing ticket in Sage: (for Sage 8.4)

1. Review the ticket on trac.sagemath.org:
• In your browser, go to trac.sagemath.org/<<ticket number>>
• review the description of the ticket to see what functionality this ticket

addresses
2. Review the code changes on trac.sagemath.org:

• on trac.sagemath.org/<<ticket number>> click on the value next to
”branch” (left column of the box describing the ticket) That will open
a window showing the changes made by this ticket.
• review the code changes for correctness. Can you think of any improvements

in the efficiency of the code? Any cases the code is failing to address?
• Make a note of the files and routines that are affected.

3. Be sure you have no uncommitted changes:
• In your terminal, navigate to the the directory where you’re doing Sage

development.
• Check if there are uncommitted changes from your work: type git status

• If there are no changes (nothing to commit), go to the next step.
• Otherwise: type git stash to save your changes without a commit

type git commit -a if you want to commit your changes
This will open a text file. Edit the top line of the file to say something like
“<<ticket number>>: <<short message describing your changes>>”
• Save the changes to that file

4. Create a branch for testing:
• Be sure you are on the master branch: type git branch to check this.
• If you are not on master: type git checkout master

• type git branch <<branch name>> to create your branch for testing
• type git checkout test to move to the testing branch

5. Pull the ticket (this is different from checking out a ticket):
• type git trac pull <<ticket number>>

6. Build sage to include the ticket’s changes :
• In the terminal, be sure you are in the directory where you’re doing Sage

development and on the test branch. type ./sage -b (”b” is for ”build”)
7. Build the documentation:

• In the terminal, be sure you are in the directory where you’re do-
ing Sage development and on the test branch. type ./sage -docbuild

reference/dynamics html (of course if the ticket changes a folder other
than dynamics, replace that with your folder)
• The last line of the output from this command will be a local path to a

file. Open that file in your browser and check the documentation for the
routines changed by the ticket to be sure it looks ok.

8. Test the documentation:
• In the terminal, be sure you are in the directory where you’re doing Sage

development. type ./sage -t <<path to folder changed by ticket>>

(”t” is for ”test”)
• You should test any folder where the ticket may have an ef-

fect. For example, you may type: ./sage -t <<path to your Sage

folder>>/src/sage/schemes/projective/ to test the whole ”projective
folder”

• If your changes also affect other functionality, be sure to test that as well.
Make a note of any problems.

• You may need to test the entire suite of doctests: make ptestlong which
can take a couple hours

9. Test the code:
• In your terminal, navigate to the affected file(s) and open them in an editor.
cd src/sage/dynamics/<<folder>>/<<file>>

• Test cases that should work (lots of them). Test cases that should not work
and be sure you get reasonable error messages.

• Do you best to find fringe cases and do your best to break the code
10. Modify the ticket in Sage::

• In your browser, go to on trac.sagemath.org/<<ticket number>>
• Add yourself as a reviewer (use your full name, not your trac/github login).
• Change the status to ”positive review” if all tests were passed and you

found no problems while testing.
• Change the status to ”needs work” if you found any errors at any stage.

Be sure to write helpful comments to describe the problems especially the
code for an test examples that failed. Sage code can be placed between
triple braces: {{{ sage code }}}

• Then update the ticket.
11. Clean up::

• You probably (but not definitely) want to change back to the master branch
and delete the test branch.

• In the terminal, be sure you are in the directory where you’re doing Sage
development.

• type git checkout master

• type git branch to make sure that you are on the master branch and to
get the name of your test branch

• type git branch -D <<branch name>> to delete your test branch

Copyright c© 2019 B. Hutz, M. Manes, J. Silverman v2.0. Permission is granted for noncommercial
distribution provided the copyright notice and this permission notice are preserved on all copies. Thanks

to ICERM for hosting us while the first version was written.

1


