
Computing modular cohomology rings of finite groups

Simon King
Friedrich Schiller University Jena

Joint work with David Green, Graham Ellis, Bettina Eick

July 24, 2019

Software, aim, results

Software, aim

SageMath package p_group_cohomology

Documentation:
http://users.minet.uni-jena.de/cohomology/documentation

Results: http://users.minet.uni-jena.de/~king/cohomology

Installation:
v3.1: sage -i p_group_cohomology
v3.2: See https://trac.sagemath.org/ticket/28204

Aim
Computation of/with modular cohomology rings of finite groups,
H∗(G ; Fp), which includes some ring theoretic invariants, induced maps
and detection of ring isomorphisms.

Simon King Computing Modular Group Cohomology July 24, 2019 2 / 11

http://users.minet.uni-jena.de/cohomology/documentation
http://users.minet.uni-jena.de/~king/cohomology
https://trac.sagemath.org/ticket/28204

Software, aim, results

Software, aim

SageMath package p_group_cohomology

Documentation:
http://users.minet.uni-jena.de/cohomology/documentation

Results: http://users.minet.uni-jena.de/~king/cohomology
Installation:

v3.1: sage -i p_group_cohomology
v3.2: See https://trac.sagemath.org/ticket/28204

Aim
Computation of/with modular cohomology rings of finite groups,
H∗(G ; Fp), which includes some ring theoretic invariants, induced maps
and detection of ring isomorphisms.

Simon King Computing Modular Group Cohomology July 24, 2019 2 / 11

http://users.minet.uni-jena.de/cohomology/documentation
http://users.minet.uni-jena.de/~king/cohomology
https://trac.sagemath.org/ticket/28204

Software, aim, results

Software, aim

SageMath package p_group_cohomology

Documentation:
http://users.minet.uni-jena.de/cohomology/documentation

Results: http://users.minet.uni-jena.de/~king/cohomology
Installation:

v3.1: sage -i p_group_cohomology
v3.2: See https://trac.sagemath.org/ticket/28204

Aim
Computation of/with modular cohomology rings of finite groups,
H∗(G ; Fp), which includes some ring theoretic invariants, induced maps
and detection of ring isomorphisms.

Simon King Computing Modular Group Cohomology July 24, 2019 2 / 11

http://users.minet.uni-jena.de/cohomology/documentation
http://users.minet.uni-jena.de/~king/cohomology
https://trac.sagemath.org/ticket/28204

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64

(J. Carlson needed ∼ 8 months comp. time [1997-2001])
about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)

Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).

HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram

Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.

Simon King Computing Modular Group Cohomology July 24, 2019 3 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.

2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)

Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)

SK [2014]: Non-commutative F5 algorithm hopefully in future
2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.

3 D. Benson [2004], D. Green and SK [2011], for prime power groups
SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G) for all d ≤ n.
2 Generators/relations Ring approximation τnH∗(G)

3 Test if H∗(G) ∼= τnH
∗(G): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups

Simon King Computing Modular Group Cohomology July 24, 2019 4 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U),

determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.

Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.

S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸
∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G):

If S ≤ U ≤ G , then resGU : H∗(G) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG (Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).

Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:

We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G).

Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.

Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15

resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7

Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2

Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.

Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G) guaranteed to be parameters for H∗(G).
Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration 8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).

Simon King Computing Modular Group Cohomology July 24, 2019 6 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.

Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.

Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.

Very useful: Stability conditions only in lower degrees. Expl: Sz(8)
2 Completeness criterion in terms of

parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G) be so that H∗(G) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set rather small degrees.
Easy to use: Only the generating degree of τnH∗(G) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G) in terms of the generating
degree of H∗(U) as a τnH∗(G)-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G).

Simon King Computing Modular Group Cohomology July 24, 2019 7 / 11

Finding graded algebra isomorphisms Finitary algebras

Finding graded algebra isomorphisms

Eick, SK [2015]

We provide a complete classification of H∗(G) up to isomorphisms of
graded Fp-algebras, for p-groups G , |G | ≤ 81.

|G | #groups #rings cum. #groups cum. #rings
2 1 1 1 1
4 2 2 3 3
8 5 5 8 7

16 14 14 22 18
32 51 48 73 55
64 267 239 340 260
3 1 1 1 1
9 2 2 3 2

27 5 5 8 5
81 15 13 23 14

Simon King Computing Modular Group Cohomology July 24, 2019 8 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.

Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...

1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.

2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.

3 Ann(GI), Ann(XI) resp.
√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI), Ann(XI) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!

Simon King Computing Modular Group Cohomology July 24, 2019 9 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.

Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.

For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).

“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).

NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.

Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.
Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G) ∈ Ar (termination?).
“S-polynomials” G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.

Simon King Computing Modular Group Cohomology July 24, 2019 10 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .

Let NFσ(f ;G) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .
Let NFσ(f ;G) be obtained from signature preserving reductions.

Disregard all S-polynomials with a signature in lead(ker(ev)).
Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .
Let NFσ(f ;G) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .
Let NFσ(f ;G) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.

Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .
Let NFσ(f ;G) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃) = f ∈ M: Lt(f̃) is an F5 signature of f .
Let NFσ(f ;G) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.

Simon King Computing Modular Group Cohomology July 24, 2019 11 / 11

	Software, aim, results
	Algorithms in Group Cohomology
	A tower of subgroups for Co3
	Completeness criteria

	Finding graded algebra isomorphisms
	Finitary algebras
	Partial isomorphism tests

	A non-commutative F5 algorithm

