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Software, aim, results

Software, aim

SageMath package p_group_cohomology

Documentation:
http://users.minet.uni-jena.de/cohomology/documentation

Results: http://users.minet.uni-jena.de/~king/cohomology

Installation:
v3.1: sage -i p_group_cohomology
v3.2: See https://trac.sagemath.org/ticket/28204

Aim
Computation of/with modular cohomology rings of finite groups,
H∗(G ; Fp), which includes some ring theoretic invariants, induced maps
and detection of ring isomorphisms.
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Software, aim, results

Results

H∗(G ; F2) for all 267 groups of order 64 and all 2328 groups of order 128

We need ∼ 8 minutes for order 64
(J. Carlson needed ∼ 8 months comp. time [1997-2001])

about 2 months for order 128 (now probably faster).

Interesting non prime power groups

Modular cohomology for different primes of (among others)
Co3: H∗(Co3;F2) is Cohen-Macaulay (was conjectured by Benson).
HS , Janko groups (not J4), Mathieu groups (not M24)
McL: Correcting result of Adem-Milgram
Sz(8): minimal presentation of H∗(Sz(8);F2) has 102 generators of
maximal degree 29 and 4790 relations of maximal degree 58.
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Algorithms in Group Cohomology

Computational approaches

General scheme suggested by J. Carlson [2001]

Need to solve the following computational tasks:
1 Given n ∈ N, compute Hd(G ) for all d ≤ n.

2 Generators/relations  Ring approximation τnH∗(G )

3 Test if H∗(G ) ∼= τnH
∗(G ): Completeness criteria

Tools we use in SageMath to solve the tasks
1 D. Green [2001]: “Heady standard bases” (min. proj. resolution of the

modular group algebras of prime power groups)
Cartan–Eilenberg [1956]: “Stable element method” (otherwise)
SK [2014]: Non-commutative F5 algorithm hopefully in future

2 Use Cython code, and let Singular compute Gröbner bases.
3 D. Benson [2004], D. Green and SK [2011], for prime power groups

SK [2013], for non-prime-power groups
P. Symonds [2010], for all groups
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Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U),

determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.

Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.

S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸
∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology A tower of subgroups for Co3

Stable element method of Cartan–Eilenberg

For G not a prime power group and S ∈ Sylp(G ):

If S ≤ U ≤ G , then resGU : H∗(G ) ↪→ H∗(U), determined by stability
conditions associated with representatives of U \ G/U.
Holt [1985] suggests to use a tower S = U0 ≤ U1 ≤ ... ≤ Uk = G .
Our default: S ≤ NG (Z (S)) ≤ G .

Mod-2 cohomology of third Conway group [SK, Green, Ellis 2011]

For G = Co3: |S | = 1024 and |S \ G/S | = 484 680.
S = U0 ≤ U1 = NG ( Z2(S)︸ ︷︷ ︸

∼=C4×C2

) ≤ U2 = NG (C4) ≤ U3 = NG (Z (S)︸ ︷︷ ︸
∼=C2

) ≤ U4 = G

i 1 2 3 4
|Ui−1 \ Ui/Ui−1| 2 3 3 7

In total, only 11 non-trivial stability conditions remain.

Simon King Computing Modular Group Cohomology July 24, 2019 5 / 11



Algorithms in Group Cohomology Completeness criteria

Completeness criteria

General scheme
Find elements of τnH∗(G ) guaranteed to be parameters for H∗(G ).

Perform tests on these elements. If they succeed:
We are done if n is “large enough” wrt. sum of the parameter degrees.

Benson [2004], Green, SK [2011]

Dickson invariants (maxdeg ∼ prkp(G) resp. ∼ prkp(G)−rk(Z(G))) yield
elements in τnH∗(G ). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7
Get smaller last parameter by enumeration  8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).
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elements in τnH∗(G ). Test if they form a “filter regular HSOP”.
Expl Syl2(Co3): Degrees 8, 12, 14, 15 resp. 8, 4, 6, 7

Get smaller last parameter by enumeration  8, 4, 6, 2
Show that ∃ finite field extension k/F2 so that H∗(G ; k) has f.r.
HSOP in degrees 8, 4, 2, 2.
Compute filter degree type using parameters of H∗(G ; F2) but work
with parameter degrees of H∗(G ; k).
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Algorithms in Group Cohomology Completeness criteria

Symonds [2010]

Let X ⊂ τnH∗(G ) be so that H∗(G ) is finite over 〈〈X 〉〉.
E.g., X a subset of a generating set  rather small degrees.

Easy to use: Only the generating degree of τnH∗(G ) as a
〈〈X 〉〉-module needs to be computed.
Usually at least as good as the modified Benson test.

SK [2013], if |G | is not prime power, S ≤ U ≤ G

1 Bound for the generator degrees of H∗(G ) in terms of the generating
degree of H∗(U) as a τnH∗(G )-module.
Very useful: Stability conditions only in lower degrees. Expl: Sz(8)

2 Completeness criterion in terms of
parameter degrees for H∗(G ; k), k/Fp,
depth (H∗(U)),
Hilbert series of τnH∗(G ).
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Finding graded algebra isomorphisms Finitary algebras

Finding graded algebra isomorphisms

Eick, SK [2015]

We provide a complete classification of H∗(G ) up to isomorphisms of
graded Fp-algebras, for p-groups G , |G | ≤ 81.

|G | #groups #rings cum. #groups cum. #rings
2 1 1 1 1
4 2 2 3 3
8 5 5 8 7

16 14 14 22 18
32 51 48 73 55
64 267 239 340 260
3 1 1 1 1
9 2 2 3 2

27 5 5 8 5
81 15 13 23 14
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Finding graded algebra isomorphisms Partial isomorphism tests

Isomorphy of f.p. graded Fp-algebras R1,R2 generated in positive degree

Very naive algorithm:
Let R1 ∼= Fp[g1, ..., gn]/Q.

For any {x1, ..., xn} with xi ∈ R
(|gi |)
2 (i = 1, ..., n), we can test if

gi 7→ xi extends to a graded isomorphism R1 → R2.
Only finitely many choices for {x1, ..., xn}. Hence we can test in finite
time whether or not R1 ∼= R2.

If gi 7→ xi for all i ∈ I ⊂ {1, ..., n} extends to an isomorphism, then...
1 equal Hilbert series of GI := 〈gi |i ∈ I 〉C R1, XI := 〈xi |i ∈ I 〉C R2.
2 substituting xi for gi in Q ∩ 〈〈gi |i ∈ I 〉〉 ⊂ Fp[g1, ..., gn] yields zero.
3 Ann(GI ), Ann(XI ) resp.

√
GI ,
√
XI have the same Hilbert series.

When we successively increase I , the number of possible mappings of GI

satisfying above criteria often remains fairly small!
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A non-commutative F5 algorithm

Minimal generating sets for modules over basic algebras

Setting
P path algebra over field K

ψ : P � A; e.g., A basic algebra.
〈g1, ..., gk〉 = M ⊂ Ar right A module; e.g., M Syzygy module.

Aim: Compute minimal generating set for M.

“Heady” standard bases [Green 2001]: Similar to Buchberger’s algorithm

Monomial ordering on P  “leading monomials” in P, A, M.
For f ∈ Ar , G ⊂ M : NF(f ;G ) ∈ Ar (termination?).
“S-polynomials”  G ′ so that NF(f ;G ′) = 0 ⇐⇒ f ∈ M.
By construction, S-polynomials belong to Rad(M).
NFh(f ;G ): Only consider radicality preserving reductions.
Thm: If a negative degree ordering is used, the non-radical elements
of a heady standard basis form a minimal generating set of M.
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A non-commutative F5 algorithm

Signed standard bases: [SK 2014] inspired by Faugère’s F5 [2002]

Evaluation ev :
⊕k

i=1 eiP � M, ev(ei ) = gi

If f̃ ∈
⊕k

i=1 eiP with ev(f̃ ) = f ∈ M: Lt(f̃ ) is an F5 signature of f .

Let NFσ(f ;G ) be obtained from signature preserving reductions.
Disregard all S-polynomials with a signature in lead(ker(ev)).

Quotient relations of A play the role of trivial Syzygies that are used
for the classical commutative F5.
Any remaining zero reduction yield non-trivial Syzygies, wich allows to
avoid useless S-polynomials later.

Why we want to use F5 in future
Thm: If a negative degree ordering is used, a signed standard basis
allows to read off bases for Radi (M).
Green’s heady algorithm uses only partial information of the
F5-signature that allows to find minimal generating sets but won’t
avoid useless critical pairs.
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