A Multi-modular Echelon Form Algorithm over Cyclotomic Fields

Jennifer Balakrishnan and William Stein

May 2005

1 The Algorithm

Let K be the number field $K=\mathbb{Q}\left(\zeta_{n}\right)$, where $\zeta_{n}=e^{\frac{2 \pi i}{n}}$ is a primitive nth root of unity. Recall that the minimal polynomial of ζ_{n} is the nth cyclotomic polynomial Φ_{n}, and that the ring of integers \mathcal{O}_{K} of K is $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{n}\right]=\mathbb{Z}[x] / \Phi_{n}(x)$ [?]. We assume access to an algorithm for quickly computing reduced row echelon forms of matrices over small finite fields \mathbb{F}_{p}.

Let A be a matrix with entries in K. Define $H_{v}(A)=\max \left\{\left|a_{i j}\right|_{v}\right\}$ and $H(A)=$ $\max H_{v}(A)$, where the v run through the archimedean absolute values of K. Whenever we write "echelon form" below, we mean "reduced row echelon form".

INPUT: A matrix A with entries in a cyclotomic field $K=\mathbb{Q}\left(\zeta_{n}\right)$.
OUTPUT: The reduced row echelon form of A.

1. Rescale the input matrix A so that none of the entries have denominators. This does not change the echelon form and makes reduction modulo many primes easier. Henceforth we assume all the entries of A are in $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{n}\right]$.
2. Let h be a guess for the height $H(E)$ of the echelon form E.
3. Consider primes p that split completely in $\mathbb{Z}\left[\zeta_{n}\right]=\mathbb{Z}[x] /\left(\Phi_{n}(x)\right)$. Write $p=$ $\wp_{1} \wp_{2} \cdots \wp_{r}$, where $r=\varphi(n)$. These are the primes $p \equiv 1(\bmod n)$, and there are infinitely many such primes by Dirichlet's theorem on primes in arithmetic progression [[ref]]. List successive such primes p_{1}, p_{2}, \ldots such that the product of the p_{i} is bigger than $c \cdot h \cdot H(A)+1$, where c is the number of columns of A. (How? Go through the primes that are $1 \bmod n$ and use a primality test [ref].)
4. For each prime p_{j} do the following:
(a) Via the Chinese Remainder Theorem, we have the isomorphism

$$
\mathcal{O}_{K} /(p) \cong \bigoplus_{i=1}^{r} \mathcal{O}_{K} / \wp_{i} .
$$

Each factor $\mathcal{O}_{K} / \wp_{i}$ is isomorphic to \mathbb{F}_{p}. We represent elements in $\mathbb{Z}\left[\zeta_{n}\right]$ as polynomials in ζ_{n}. We have $\wp_{i}=\left(p, \zeta_{n}-b_{i}\right)$, for some $b_{i} \in \mathbb{Z}$. Let $a_{i} \in \mathbb{F}_{p}$ be the reduction of b_{i} modulo p. We thus have a homomorphism $\mathcal{O}_{K} \rightarrow \bigoplus_{i=1}^{r} \mathcal{O}_{K} / \wp_{i} \cong \mathbb{F}_{p}^{r}$ given by

$$
f\left(\zeta_{n}\right) \mapsto\left(f\left(a_{1}\right), f\left(a_{2}\right), \ldots, f\left(a_{r}\right)\right) \quad(\bmod p)
$$

(b) Now consider $\mathcal{O}_{K} /(p)$ as the \mathbb{F}_{p}-vector space $\mathbb{F}_{p}[x] /\left(\Phi_{n}(x)\right)$ with basis

$$
\left\{1, \bar{\zeta}_{n}, \bar{\zeta}_{n}^{2}, \ldots, \bar{\zeta}_{n}^{r-1}\right\}
$$

Consider the linear transformation

$$
T: \mathcal{O}_{K} /(p) \rightarrow \mathbb{F}_{p}^{r}
$$

defined above. Compute the image of each basis vector under T :

$$
\begin{aligned}
1 & \mapsto(1,1, \ldots, 1) \\
\bar{\zeta}_{n} & \mapsto\left(a_{1}, a_{2}, \ldots, a_{r}\right) \\
\bar{\zeta}_{n}^{2} & \mapsto\left(a_{1}^{2}, a_{2}^{2}, \ldots, a_{r}^{2}\right) \\
\vdots & \\
\bar{\zeta}_{n}^{r-1} & \mapsto\left(a_{1}^{r-1}, a_{2}^{r-1}, \ldots, a_{r}^{r-1}\right) .
\end{aligned}
$$

Hence T can be represented by the Vandermonde matrix F below:

$$
\left(\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \ldots & a_{1}^{r-1} \\
1 & a_{2} & a_{2}^{2} & \ldots & a_{2}^{r-1} \\
\vdots & \ldots & \ldots & \ldots & \vdots \\
1 & a_{r} & a_{r}^{2} & \ldots & a_{r}^{r-1}
\end{array}\right)
$$

The a_{i} are distinct nth roots of unity in \mathbb{F}_{p}^{\times}, so the Vandermonde determinant is nonzero.
(c) Since we will be interested in computing T^{-1}, compute the inverse of F, e.g., by finding the echelon form of F.
(d) Compute the echelon form of $A\left(\bmod \wp_{i}\right)$ for $i=1, \ldots, r$, using an algorithm for echelon forms over \mathbb{F}_{p}. (Note: If A is square and $A\left(\bmod \wp_{i}\right)$ is invertible, then A must be invertible, hence its echelon form is the identity matrix, and we terminate the algorithm.)
(e) Use F^{-1} to find a matrix B_{j} with entries in \mathcal{O}_{K}, such that $B \equiv B_{\wp_{i}}(\bmod$ \wp_{i}) for $i=1, \ldots, r$. We hope that the reduction of B modulo p equals the reduction of the echelon form of A modulo p. (In fact equality holds for all but finitely many primes, as we will see.)
5. Discard any B_{k} whose pivot column list is not maximal among pivot lists of all B_{j} found.
6. Use the usual Chinese Remainder Theorem over \mathbb{Z} to find a matrix B with entries in $\mathbb{Z}\left[\zeta_{n}\right]$ such that $B \equiv B_{i}\left(\bmod p_{i}\right)$ for all p_{i}. Note: one only needs to do a few CRT's, then do a linear combination of matrices. Also to use CRT on $f\left(\zeta_{n}\right)$ and $g\left(\zeta_{n}\right)$, just view both as the vector of integer coefficients, and apply CRT to those two vectors.
7. Use rational reconstruction on each entry of B to find a matrix C whose entries in $\mathbb{Q}\left(\zeta_{n}\right)$, viewed as polynomials in ζ_{n}, have coefficients that are rational numbers a / b such that $0 \leq|a|, b \leq \sqrt{M / 2}$, where $M=\prod p_{i}$ and $C \equiv B_{i}\left(\bmod p_{i}\right)$ for each prime p_{i}. If rational reconstruction fails, compute a few more echelon forms modulo the next few primes (using the above steps) and attempt rational reconstruction again. Let E be the matrix over $\mathbb{Q}\left(\zeta_{n}\right)$ so obtained.
8. Compute the denominator d of E, i.e., the smallest positive integer such that $d E$ has entries in $\mathbb{Z}\left[\zeta_{n}\right]$. If

$$
H_{v}(d E) H_{v}(A) m \leq \prod p_{i}
$$

for a fixed valuation v, then by Theorem ??, E is the reduced row echelon form of A. If not, repeat the above steps with a few more primes. Note that $H_{v}(A)=$ $\max \left\{\left|a_{i j}\right|_{v}\right\}$, and since each entry $a_{i j}$ is of the form $b_{0}+b_{1} \zeta_{n}+\cdots+b_{t} \zeta_{n}^{t}$, by the triangle inequality, we have that

$$
\left|a_{i j}\right|_{v}=\left|b_{0}+b_{1} \zeta_{n}+\cdots+b_{t} \zeta_{n^{t}}\right| \leq \sum\left|b_{i}\right|\left|\zeta_{n}^{i}\right|=\sum\left|b_{i}\right| .
$$

So to bound $H_{v}(A)$, use the upper bound given by the above inequalities.
Theorem 1.1. Suppose A is a matrix with c columns and entries in \mathcal{O}_{K}. Let $E=\ldots$ If

$$
H_{v}(d E) H_{v}(A) c \leq \prod p_{i}
$$

for a fixed valuation v, then E is the reduced row echelon form of A.

2 Examples

2.1 Example 1

Let $K=\mathbb{Q}\left(\zeta_{3}\right)$. We compute the echelon form of two matrices with entries in K using the above algorithm.

For our first example, let A be the matrix

$$
A=\left(\begin{array}{ccc}
1+\zeta & 2+\zeta & \zeta \\
1 & 1+\zeta & -2 \\
1 & 5 & -1+\zeta
\end{array}\right)
$$

Step 1. None of the entries of A have denominators, so we proceed to Step 2.
Step 2. Let $h=10$ be a guess for the height h.

Step 3. The ring of integers \mathcal{O}_{K} of K is $\mathbb{Z}\left[\zeta_{3}\right]$, and the primes that split completely in \mathcal{O}_{K} are congruent to $1 \bmod 3$. Our list of primes starts with 7,13 , and 19. Notice, though, that since $c=3, h=10$, and $H(A)=5$, taking the primes $p_{1}=13$ and $p_{2}=19$ results in $13 \cdot 19>c \cdot h \cdot H(A)+1=151$, and so it suffices to use 13 and 19.

Step 4a. The third cyclotomic polynomial $\Phi_{3}(x)$ is $\Phi_{3}(x)=x^{2}+x+1$, and taking the prime $p_{1}=13$, we see that 13 splits in $\mathbb{Z}\left[\zeta_{3}\right]$ as $\wp_{1} \wp_{2}$, where $\wp_{1}=\left(13, \zeta_{3}-3\right)$ and $\wp_{3}=\left(13, \zeta_{3}-9\right)$. Our homomorphism T thus takes

$$
a+b \zeta_{3} \mapsto(\overline{a+3 b}, \overline{a+9 b})
$$

Step 4b. We compute the matrix F corresponding to the linear map T above: $F=\left(\begin{array}{ll}1 & 3 \\ 1 & 9\end{array}\right)$.
Step 4c. The inverse of F is $F^{-1}=\left(\begin{array}{cc}8 & 6 \\ 2 & 11\end{array}\right)$
Step ??. We have that $A\left(\bmod \wp_{1}\right)=\left(\begin{array}{ccc}4 & 5 & 3 \\ 1 & 4 & 11 \\ 1 & 5 & 2\end{array}\right) \in M_{3 \times 3}\left(\mathbb{F}_{13}\right)$, and as $A\left(\bmod \wp_{1}\right)$ is invertible, the echelon form is just $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$. Since the echelon form of some reduction is the identity matrix, the echelon form of A is just the identity matrix, and we are done.

2.2 Example 2

For our second example, let A be the matrix

$$
A=\left(\begin{array}{ccc}
1+\zeta & 2+\zeta & \zeta \\
1 & 1+\zeta & -2
\end{array}\right)
$$

Step 1. None of the entries of A have denominators, so we proceed to Step 2.
Step 2. Let $h=10$ be a guess for the height h.
Step 3. The ring of integers \mathcal{O}_{K} of K is $\mathbb{Z}\left[\zeta_{3}\right]$, and the primes that split completely in \mathcal{O}_{K} are congruent to $1 \bmod 3$. Note as above that it suffices to use $p_{1}=13$ and $p_{2}=19$.

Step 4a. Again, for the prime $p_{1}=13$, we see that 13 splits in $\mathbb{Z}\left[\zeta_{3}\right]$ as $\wp_{1} \wp_{2}$, where $\wp_{1}=\left(13, \zeta_{3}-3\right)$ and $\wp_{3}=\left(13, \zeta_{3}-9\right)$. Our homomorphism T thus takes

$$
a+b \zeta_{3} \mapsto(\overline{a+3 b}, \overline{a+9 b})
$$

Step 4b. We compute the matrix F corresponding to the linear map T above: $F=\left(\begin{array}{ll}1 & 3 \\ 1 & 9\end{array}\right)$.

Step 4c. The inverse of F is $F^{-1}=\left(\begin{array}{cc}8 & 6 \\ 2 & 11\end{array}\right)$.
Step 4d. We see that

$$
A \quad\left(\bmod \wp_{1}\right)=\left(\begin{array}{ccc}
4 & 5 & 3 \\
1 & 4 & 11
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 12
\end{array}\right) \in M_{2 \times 3}\left(\mathbb{F}_{13}\right)
$$

and

$$
A \quad\left(\bmod \wp_{2}\right)=\left(\begin{array}{ccc}
10 & 11 & 9 \\
1 & 10 & 11
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 9 \\
0 & 1 & 8
\end{array}\right) \in M_{2 \times 3}\left(\mathbb{F}_{13}\right)
$$

Step 4e. Applying F^{-1} to the entries of $\left(\begin{array}{ccc}(1,1) & (0,0) & (2,9) \\ (0,0) & (1,1) & (12,8)\end{array}\right)$, we find that

$$
B_{1}=\left(\begin{array}{ccc}
1 & 0 & 5-\zeta \\
0 & 1 & 1+8 \zeta
\end{array}\right)
$$

We repeat Steps $4 a$ through $4 e$ for the prime $p_{2}=19$:
Step 4'a. For the prime $p_{2}=19$, we see that 19 splits in $\mathbb{Z}\left[\zeta_{3}\right]$ as $\wp_{1} \wp_{2}$, where $\wp_{1}=\left(19, \zeta_{3}-7\right)$ and $\wp_{3}=\left(19, \zeta_{3}-11\right)$. Our homomorphism T thus takes

$$
a+b \zeta_{3} \mapsto(\overline{a+7 b}, \overline{a+11 b})
$$

Step 4^{\prime} 'b. We compute the matrix F corresponding to the linear map T above: $F=\left(\begin{array}{cc}1 & 7 \\ 1 & 11\end{array}\right)$.
Step 4 'c. The inverse of F is $F^{-1}=\left(\begin{array}{ll}17 & 3 \\ 14 & 5\end{array}\right)$.
Step $\boldsymbol{? ~}_{2}$. We see that

$$
A \quad\left(\bmod \wp_{1}\right)=\left(\begin{array}{ccc}
8 & 9 & 7 \\
1 & 8 & 17
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right) \in M_{2 \times 3}\left(\mathbb{F}_{19}\right)
$$

and

$$
A \quad\left(\bmod \wp_{2}\right)=\left(\begin{array}{ccc}
12 & 13 & 11 \\
1 & 12 & 17
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 16 \\
0 & 1 & 8
\end{array}\right) \in M_{2 \times 3}\left(\mathbb{F}_{19}\right)
$$

Step 4'e. Applying F^{-1} to $\left(\begin{array}{ccc}(1,1) & (0,0) & (1,16) \\ (0,0) & (1,1) & (2,8)\end{array}\right)$, we find that

$$
B_{2}=\left(\begin{array}{ccc}
1 & 0 & 8-\zeta \\
0 & 1 & 1+11 \zeta
\end{array}\right)
$$

Step ??. We get

$$
B=\left(\begin{array}{ccc}
1 & 0 & 122-\zeta \\
0 & 1 & 1+125 \zeta
\end{array}\right)
$$

Step ??. We find that

$$
C=\left(\begin{array}{ccc}
1 & 0 & -\frac{3}{2}-\zeta \\
0 & 1 & 1+\frac{3}{2} \zeta
\end{array}\right)
$$

Here we computed, e.g., $-\frac{3}{2}$ by applying rational reconstruction to $122(\bmod 247)$ (see ...).

3 Comments

There's work one does for a given cyclotomic field and many primes $p \equiv 1(\bmod n)$, which does not have to be repeated if we are computing echelon forms of many matrices. This is a space versus time tradeoff.

