{{{id=158| B = Matrix([[0,1],[-1,0]]) /// }}} {{{id=101| B /// \newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \end{array}\right) }}} {{{id=102| ClusterSeed? ///

File: /Users/sage/sage/local/lib/python2.6/site-packages/sage/combinat/cluster_algebra_quiver/cluster_seed.py

Type: <type ‘type’>

Definition: ClusterSeed( [noargspec] )

Docstring:

The cluster seed associated to an exchange matrix.

INPUT:

EXAMPLES:

sage: S = ClusterSeed(['A',5]); S
A seed for a cluster algebra of rank 5 of type ['A', 5]

sage: S = ClusterSeed(['A',[2,5],1]); S
A seed for a cluster algebra of rank 7 of type ['A', [2, 5], 1]

sage: T = ClusterSeed( S ); T
A seed for a cluster algebra of rank 7 of type ['A', [2, 5], 1]

sage: T = ClusterSeed( S._M ); T
A seed for a cluster algebra of rank 7

sage: T = ClusterSeed( S.quiver()._digraph ); T
A seed for a cluster algebra of rank 7

sage: T = ClusterSeed( S.quiver()._digraph.edges() ); T
A seed for a cluster algebra of rank 7
}}} {{{id=103| S = ClusterSeed(B); S /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2| }}} {{{id=104| S.mutation_type() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|['A',|\phantom{x}\verb|2]| }}} {{{id=105| S /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]| }}} {{{id=155| /// }}} {{{id=106| S.is_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=107| S.is_mutation_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=109| S.is_acyclic() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=108| S.is_bipartite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=112| S.show() /// }}} {{{id=113| S.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}\right] }}} {{{id=111| S.mutate(0); S.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{1} + 1}{x_{0}}, x_{1}\right] }}} {{{id=114| S.mutate(1); S.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{1} + 1}{x_{0}}, \frac{x_{0} + x_{1} + 1}{x_{0} x_{1}}\right] }}} {{{id=116| S.mutate([0,1]); S.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{0} + 1}{x_{1}}, x_{0}\right] }}} {{{id=117| S.variable_class() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}, \frac{x_{1} + 1}{x_{0}}, \frac{x_{0} + 1}{x_{1}}, \frac{x_{0} + x_{1} + 1}{x_{0} x_{1}}\right] }}} {{{id=156| S.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{0} + 1}{x_{1}}, x_{0}\right] }}} {{{id=115| S.reset_cluster() /// }}} {{{id=118| SP = S.principal_extension(); SP /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|\phantom{x}\verb|with|\phantom{x}\verb|2|\phantom{x}\verb|frozen|\phantom{x}\verb|variables| }}} {{{id=161| SP.b_matrix() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right) }}} {{{id=119| SP.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}\right] }}} {{{id=120| SP.variable_class() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}, y_{0}, y_{1}, \frac{x_{1} + y_{0}}{x_{0}}, \frac{x_{0} y_{1} + 1}{x_{1}}, \frac{x_{0} y_{0} y_{1} + x_{1} + y_{0}}{x_{0} x_{1}}\right] }}} {{{id=122| SP.mutation_sequence([0,1,0,1,0],return_output='matrix') /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \\ 0 & -1 \\ 1 & -1 \end{array}\right), \left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \\ 0 & -1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{rr} 0 & 1 \\ -1 & 0 \\ 0 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{array}\right)\right] }}} {{{id=123| Fpolys = SP.variable_class(); Fpolys /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}, y_{0}, y_{1}, \frac{x_{1} + y_{0}}{x_{0}}, \frac{x_{0} y_{1} + 1}{x_{1}}, \frac{x_{0} y_{0} y_{1} + x_{1} + y_{0}}{x_{0} x_{1}}\right] }}} {{{id=125| SP.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}\right] }}} {{{id=124| SP.set_cluster([1,1,SP.y(0),SP.y(1)]); SP.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[1, 1\right] }}} {{{id=127| /// }}} {{{id=1| S2 = ClusterSeed(['A',[1,1],1]); S2 /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|[1,|\phantom{x}\verb|1],|\phantom{x}\verb|1]| }}} {{{id=110| S2.b_matrix() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr} 0 & 2 \\ -2 & 0 \end{array}\right) }}} {{{id=98| S2.show() /// }}} {{{id=3| S2.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}\right] }}} {{{id=4| S2.mutate([0,1]); S2.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{1}^{2} + 1}{x_{0}}, \frac{x_{1}^{4} + x_{0}^{2} + 2 x_{1}^{2} + 1}{x_{0}^{2} x_{1}}\right] }}} {{{id=5| S2.mutate([0,1]); S2.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{1}^{6} + x_{0}^{4} + 2 x_{0}^{2} x_{1}^{2} + 3 x_{1}^{4} + 2 x_{0}^{2} + 3 x_{1}^{2} + 1}{x_{0}^{3} x_{1}^{2}}, \frac{x_{1}^{8} + x_{0}^{6} + 2 x_{0}^{4} x_{1}^{2} + 3 x_{0}^{2} x_{1}^{4} + 4 x_{1}^{6} + 3 x_{0}^{4} + 6 x_{0}^{2} x_{1}^{2} + 6 x_{1}^{4} + 3 x_{0}^{2} + 4 x_{1}^{2} + 1}{x_{0}^{4} x_{1}^{3}}\right] }}} {{{id=6| S2.mutate([0,1]); S2.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{x_{1}^{10} + x_{0}^{8} + 2 x_{0}^{6} x_{1}^{2} + 3 x_{0}^{4} x_{1}^{4} + 4 x_{0}^{2} x_{1}^{6} + 5 x_{1}^{8} + 4 x_{0}^{6} + 9 x_{0}^{4} x_{1}^{2} + 12 x_{0}^{2} x_{1}^{4} + 10 x_{1}^{6} + 6 x_{0}^{4} + 12 x_{0}^{2} x_{1}^{2} + 10 x_{1}^{4} + 4 x_{0}^{2} + 5 x_{1}^{2} + 1}{x_{0}^{5} x_{1}^{4}}, \frac{x_{1}^{12} + x_{0}^{10} + 2 x_{0}^{8} x_{1}^{2} + 3 x_{0}^{6} x_{1}^{4} + 4 x_{0}^{4} x_{1}^{6} + 5 x_{0}^{2} x_{1}^{8} + 6 x_{1}^{10} + 5 x_{0}^{8} + 12 x_{0}^{6} x_{1}^{2} + 18 x_{0}^{4} x_{1}^{4} + 20 x_{0}^{2} x_{1}^{6} + 15 x_{1}^{8} + 10 x_{0}^{6} + 24 x_{0}^{4} x_{1}^{2} + 30 x_{0}^{2} x_{1}^{4} + 20 x_{1}^{6} + 10 x_{0}^{4} + 20 x_{0}^{2} x_{1}^{2} + 15 x_{1}^{4} + 5 x_{0}^{2} + 6 x_{1}^{2} + 1}{x_{0}^{6} x_{1}^{5}}\right] }}} {{{id=131| latex( S2.cluster() ) /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|\left[\frac{x_{1}^{10}|\phantom{x}\verb|+|\phantom{x}\verb|x_{0}^{8}|\phantom{x}\verb|+|\phantom{x}\verb|2|\phantom{x}\verb|x_{0}^{6}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|3|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|4|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|5|\phantom{x}\verb|x_{1}^{8}|\phantom{x}\verb|+|\phantom{x}\verb|4|\phantom{x}\verb|x_{0}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|9|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|12|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|10|\phantom{x}\verb|x_{1}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|6|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|12|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|10|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|4|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|5|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|1}{x_{0}^{5}|\phantom{x}\verb|x_{1}^{4}},|\phantom{x}\verb|\frac{x_{1}^{12}|\phantom{x}\verb|+|\phantom{x}\verb|x_{0}^{10}|\phantom{x}\verb|+|\phantom{x}\verb|2|\phantom{x}\verb|x_{0}^{8}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|3|\phantom{x}\verb|x_{0}^{6}|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|4|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|x_{1}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|5|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{8}|\phantom{x}\verb|+|\phantom{x}\verb|6|\phantom{x}\verb|x_{1}^{10}|\phantom{x}\verb|+|\phantom{x}\verb|5|\phantom{x}\verb|x_{0}^{8}|\phantom{x}\verb|+|\phantom{x}\verb|12|\phantom{x}\verb|x_{0}^{6}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|18|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|20|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|15|\phantom{x}\verb|x_{1}^{8}|\phantom{x}\verb|+|\phantom{x}\verb|10|\phantom{x}\verb|x_{0}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|24|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|30|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|20|\phantom{x}\verb|x_{1}^{6}|\phantom{x}\verb|+|\phantom{x}\verb|10|\phantom{x}\verb|x_{0}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|20|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|15|\phantom{x}\verb|x_{1}^{4}|\phantom{x}\verb|+|\phantom{x}\verb|5|\phantom{x}\verb|x_{0}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|6|\phantom{x}\verb|x_{1}^{2}|\phantom{x}\verb|+|\phantom{x}\verb|1}{x_{0}^{6}|\phantom{x}\verb|x_{1}^{5}}\right]| }}} {{{id=12| S2.variable_class() /// Traceback (most recent call last): File "", line 1, in File "_sage_input_39.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("UzIudmFyaWFibGVfY2xhc3MoKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/private/tmp/tmpmgk6BI/___code___.py", line 2, in exec compile(u'S2.variable_class()' + '\n', '', 'single') File "", line 1, in File "/Users/sage/sage/local/lib/python2.6/site-packages/sage/combinat/cluster_algebra_quiver/cluster_seed.py", line 1623, in variable_class assert self.is_finite(), 'The variable class can - for infinite types - only be computed up to a given depth' AssertionError: The variable class can - for infinite types - only be computed up to a given depth }}} {{{id=14| S2.variable_class(depth=3) /// Found a bipartite seed - restarting the depth counter at zero and constructing the variable class using its bipartite belt. \newcommand{\Bold}[1]{\mathbf{#1}}\left[x_{0}, x_{1}, \frac{x_{1}^{2} + 1}{x_{0}}, \frac{x_{1}^{4} + x_{0}^{2} + 2 x_{1}^{2} + 1}{x_{0}^{2} x_{1}}, \frac{x_{1}^{6} + x_{0}^{4} + 2 x_{0}^{2} x_{1}^{2} + 3 x_{1}^{4} + 2 x_{0}^{2} + 3 x_{1}^{2} + 1}{x_{0}^{3} x_{1}^{2}}, \frac{x_{1}^{8} + x_{0}^{6} + 2 x_{0}^{4} x_{1}^{2} + 3 x_{0}^{2} x_{1}^{4} + 4 x_{1}^{6} + 3 x_{0}^{4} + 6 x_{0}^{2} x_{1}^{2} + 6 x_{1}^{4} + 3 x_{0}^{2} + 4 x_{1}^{2} + 1}{x_{0}^{4} x_{1}^{3}}, \frac{x_{1}^{10} + x_{0}^{8} + 2 x_{0}^{6} x_{1}^{2} + 3 x_{0}^{4} x_{1}^{4} + 4 x_{0}^{2} x_{1}^{6} + 5 x_{1}^{8} + 4 x_{0}^{6} + 9 x_{0}^{4} x_{1}^{2} + 12 x_{0}^{2} x_{1}^{4} + 10 x_{1}^{6} + 6 x_{0}^{4} + 12 x_{0}^{2} x_{1}^{2} + 10 x_{1}^{4} + 4 x_{0}^{2} + 5 x_{1}^{2} + 1}{x_{0}^{5} x_{1}^{4}}, \frac{x_{1}^{12} + x_{0}^{10} + 2 x_{0}^{8} x_{1}^{2} + 3 x_{0}^{6} x_{1}^{4} + 4 x_{0}^{4} x_{1}^{6} + 5 x_{0}^{2} x_{1}^{8} + 6 x_{1}^{10} + 5 x_{0}^{8} + 12 x_{0}^{6} x_{1}^{2} + 18 x_{0}^{4} x_{1}^{4} + 20 x_{0}^{2} x_{1}^{6} + 15 x_{1}^{8} + 10 x_{0}^{6} + 24 x_{0}^{4} x_{1}^{2} + 30 x_{0}^{2} x_{1}^{4} + 20 x_{1}^{6} + 10 x_{0}^{4} + 20 x_{0}^{2} x_{1}^{2} + 15 x_{1}^{4} + 5 x_{0}^{2} + 6 x_{1}^{2} + 1}{x_{0}^{6} x_{1}^{5}}, \frac{x_{1}^{14} + x_{0}^{12} + 2 x_{0}^{10} x_{1}^{2} + 3 x_{0}^{8} x_{1}^{4} + 4 x_{0}^{6} x_{1}^{6} + 5 x_{0}^{4} x_{1}^{8} + 6 x_{0}^{2} x_{1}^{10} + 7 x_{1}^{12} + 6 x_{0}^{10} + 15 x_{0}^{8} x_{1}^{2} + 24 x_{0}^{6} x_{1}^{4} + 30 x_{0}^{4} x_{1}^{6} + 30 x_{0}^{2} x_{1}^{8} + 21 x_{1}^{10} + 15 x_{0}^{8} + 40 x_{0}^{6} x_{1}^{2} + 60 x_{0}^{4} x_{1}^{4} + 60 x_{0}^{2} x_{1}^{6} + 35 x_{1}^{8} + 20 x_{0}^{6} + 50 x_{0}^{4} x_{1}^{2} + 60 x_{0}^{2} x_{1}^{4} + 35 x_{1}^{6} + 15 x_{0}^{4} + 30 x_{0}^{2} x_{1}^{2} + 21 x_{1}^{4} + 6 x_{0}^{2} + 7 x_{1}^{2} + 1}{x_{0}^{7} x_{1}^{6}}, \frac{x_{1}^{16} + x_{0}^{14} + 2 x_{0}^{12} x_{1}^{2} + 3 x_{0}^{10} x_{1}^{4} + 4 x_{0}^{8} x_{1}^{6} + 5 x_{0}^{6} x_{1}^{8} + 6 x_{0}^{4} x_{1}^{10} + 7 x_{0}^{2} x_{1}^{12} + 8 x_{1}^{14} + 7 x_{0}^{12} + 18 x_{0}^{10} x_{1}^{2} + 30 x_{0}^{8} x_{1}^{4} + 40 x_{0}^{6} x_{1}^{6} + 45 x_{0}^{4} x_{1}^{8} + 42 x_{0}^{2} x_{1}^{10} + 28 x_{1}^{12} + 21 x_{0}^{10} + 60 x_{0}^{8} x_{1}^{2} + 100 x_{0}^{6} x_{1}^{4} + 120 x_{0}^{4} x_{1}^{6} + 105 x_{0}^{2} x_{1}^{8} + 56 x_{1}^{10} + 35 x_{0}^{8} + 100 x_{0}^{6} x_{1}^{2} + 150 x_{0}^{4} x_{1}^{4} + 140 x_{0}^{2} x_{1}^{6} + 70 x_{1}^{8} + 35 x_{0}^{6} + 90 x_{0}^{4} x_{1}^{2} + 105 x_{0}^{2} x_{1}^{4} + 56 x_{1}^{6} + 21 x_{0}^{4} + 42 x_{0}^{2} x_{1}^{2} + 28 x_{1}^{4} + 7 x_{0}^{2} + 8 x_{1}^{2} + 1}{x_{0}^{8} x_{1}^{7}}, \frac{x_{1}^{18} + x_{0}^{16} + 2 x_{0}^{14} x_{1}^{2} + 3 x_{0}^{12} x_{1}^{4} + 4 x_{0}^{10} x_{1}^{6} + 5 x_{0}^{8} x_{1}^{8} + 6 x_{0}^{6} x_{1}^{10} + 7 x_{0}^{4} x_{1}^{12} + 8 x_{0}^{2} x_{1}^{14} + 9 x_{1}^{16} + 8 x_{0}^{14} + 21 x_{0}^{12} x_{1}^{2} + 36 x_{0}^{10} x_{1}^{4} + 50 x_{0}^{8} x_{1}^{6} + 60 x_{0}^{6} x_{1}^{8} + 63 x_{0}^{4} x_{1}^{10} + 56 x_{0}^{2} x_{1}^{12} + 36 x_{1}^{14} + 28 x_{0}^{12} + 84 x_{0}^{10} x_{1}^{2} + 150 x_{0}^{8} x_{1}^{4} + 200 x_{0}^{6} x_{1}^{6} + 210 x_{0}^{4} x_{1}^{8} + 168 x_{0}^{2} x_{1}^{10} + 84 x_{1}^{12} + 56 x_{0}^{10} + 175 x_{0}^{8} x_{1}^{2} + 300 x_{0}^{6} x_{1}^{4} + 350 x_{0}^{4} x_{1}^{6} + 280 x_{0}^{2} x_{1}^{8} + 126 x_{1}^{10} + 70 x_{0}^{8} + 210 x_{0}^{6} x_{1}^{2} + 315 x_{0}^{4} x_{1}^{4} + 280 x_{0}^{2} x_{1}^{6} + 126 x_{1}^{8} + 56 x_{0}^{6} + 147 x_{0}^{4} x_{1}^{2} + 168 x_{0}^{2} x_{1}^{4} + 84 x_{1}^{6} + 28 x_{0}^{4} + 56 x_{0}^{2} x_{1}^{2} + 36 x_{1}^{4} + 8 x_{0}^{2} + 9 x_{1}^{2} + 1}{x_{0}^{9} x_{1}^{8}}, \frac{x_{1}^{20} + x_{0}^{18} + 2 x_{0}^{16} x_{1}^{2} + 3 x_{0}^{14} x_{1}^{4} + 4 x_{0}^{12} x_{1}^{6} + 5 x_{0}^{10} x_{1}^{8} + 6 x_{0}^{8} x_{1}^{10} + 7 x_{0}^{6} x_{1}^{12} + 8 x_{0}^{4} x_{1}^{14} + 9 x_{0}^{2} x_{1}^{16} + 10 x_{1}^{18} + 9 x_{0}^{16} + 24 x_{0}^{14} x_{1}^{2} + 42 x_{0}^{12} x_{1}^{4} + 60 x_{0}^{10} x_{1}^{6} + 75 x_{0}^{8} x_{1}^{8} + 84 x_{0}^{6} x_{1}^{10} + 84 x_{0}^{4} x_{1}^{12} + 72 x_{0}^{2} x_{1}^{14} + 45 x_{1}^{16} + 36 x_{0}^{14} + 112 x_{0}^{12} x_{1}^{2} + 210 x_{0}^{10} x_{1}^{4} + 300 x_{0}^{8} x_{1}^{6} + 350 x_{0}^{6} x_{1}^{8} + 336 x_{0}^{4} x_{1}^{10} + 252 x_{0}^{2} x_{1}^{12} + 120 x_{1}^{14} + 84 x_{0}^{12} + 280 x_{0}^{10} x_{1}^{2} + 525 x_{0}^{8} x_{1}^{4} + 700 x_{0}^{6} x_{1}^{6} + 700 x_{0}^{4} x_{1}^{8} + 504 x_{0}^{2} x_{1}^{10} + 210 x_{1}^{12} + 126 x_{0}^{10} + 420 x_{0}^{8} x_{1}^{2} + 735 x_{0}^{6} x_{1}^{4} + 840 x_{0}^{4} x_{1}^{6} + 630 x_{0}^{2} x_{1}^{8} + 252 x_{1}^{10} + 126 x_{0}^{8} + 392 x_{0}^{6} x_{1}^{2} + 588 x_{0}^{4} x_{1}^{4} + 504 x_{0}^{2} x_{1}^{6} + 210 x_{1}^{8} + 84 x_{0}^{6} + 224 x_{0}^{4} x_{1}^{2} + 252 x_{0}^{2} x_{1}^{4} + 120 x_{1}^{6} + 36 x_{0}^{4} + 72 x_{0}^{2} x_{1}^{2} + 45 x_{1}^{4} + 9 x_{0}^{2} + 10 x_{1}^{2} + 1}{x_{0}^{10} x_{1}^{9}}, \frac{x_{1}^{22} + x_{0}^{20} + 2 x_{0}^{18} x_{1}^{2} + 3 x_{0}^{16} x_{1}^{4} + 4 x_{0}^{14} x_{1}^{6} + 5 x_{0}^{12} x_{1}^{8} + 6 x_{0}^{10} x_{1}^{10} + 7 x_{0}^{8} x_{1}^{12} + 8 x_{0}^{6} x_{1}^{14} + 9 x_{0}^{4} x_{1}^{16} + 10 x_{0}^{2} x_{1}^{18} + 11 x_{1}^{20} + 10 x_{0}^{18} + 27 x_{0}^{16} x_{1}^{2} + 48 x_{0}^{14} x_{1}^{4} + 70 x_{0}^{12} x_{1}^{6} + 90 x_{0}^{10} x_{1}^{8} + 105 x_{0}^{8} x_{1}^{10} + 112 x_{0}^{6} x_{1}^{12} + 108 x_{0}^{4} x_{1}^{14} + 90 x_{0}^{2} x_{1}^{16} + 55 x_{1}^{18} + 45 x_{0}^{16} + 144 x_{0}^{14} x_{1}^{2} + 280 x_{0}^{12} x_{1}^{4} + 420 x_{0}^{10} x_{1}^{6} + 525 x_{0}^{8} x_{1}^{8} + 560 x_{0}^{6} x_{1}^{10} + 504 x_{0}^{4} x_{1}^{12} + 360 x_{0}^{2} x_{1}^{14} + 165 x_{1}^{16} + 120 x_{0}^{14} + 420 x_{0}^{12} x_{1}^{2} + 840 x_{0}^{10} x_{1}^{4} + 1225 x_{0}^{8} x_{1}^{6} + 1400 x_{0}^{6} x_{1}^{8} + 1260 x_{0}^{4} x_{1}^{10} + 840 x_{0}^{2} x_{1}^{12} + 330 x_{1}^{14} + 210 x_{0}^{12} + 756 x_{0}^{10} x_{1}^{2} + 1470 x_{0}^{8} x_{1}^{4} + 1960 x_{0}^{6} x_{1}^{6} + 1890 x_{0}^{4} x_{1}^{8} + 1260 x_{0}^{2} x_{1}^{10} + 462 x_{1}^{12} + 252 x_{0}^{10} + 882 x_{0}^{8} x_{1}^{2} + 1568 x_{0}^{6} x_{1}^{4} + 1764 x_{0}^{4} x_{1}^{6} + 1260 x_{0}^{2} x_{1}^{8} + 462 x_{1}^{10} + 210 x_{0}^{8} + 672 x_{0}^{6} x_{1}^{2} + 1008 x_{0}^{4} x_{1}^{4} + 840 x_{0}^{2} x_{1}^{6} + 330 x_{1}^{8} + 120 x_{0}^{6} + 324 x_{0}^{4} x_{1}^{2} + 360 x_{0}^{2} x_{1}^{4} + 165 x_{1}^{6} + 45 x_{0}^{4} + 90 x_{0}^{2} x_{1}^{2} + 55 x_{1}^{4} + 10 x_{0}^{2} + 11 x_{1}^{2} + 1}{x_{0}^{11} x_{1}^{10}}, \frac{x_{1}^{24} + x_{0}^{22} + 2 x_{0}^{20} x_{1}^{2} + 3 x_{0}^{18} x_{1}^{4} + 4 x_{0}^{16} x_{1}^{6} + 5 x_{0}^{14} x_{1}^{8} + 6 x_{0}^{12} x_{1}^{10} + 7 x_{0}^{10} x_{1}^{12} + 8 x_{0}^{8} x_{1}^{14} + 9 x_{0}^{6} x_{1}^{16} + 10 x_{0}^{4} x_{1}^{18} + 11 x_{0}^{2} x_{1}^{20} + 12 x_{1}^{22} + 11 x_{0}^{20} + 30 x_{0}^{18} x_{1}^{2} + 54 x_{0}^{16} x_{1}^{4} + 80 x_{0}^{14} x_{1}^{6} + 105 x_{0}^{12} x_{1}^{8} + 126 x_{0}^{10} x_{1}^{10} + 140 x_{0}^{8} x_{1}^{12} + 144 x_{0}^{6} x_{1}^{14} + 135 x_{0}^{4} x_{1}^{16} + 110 x_{0}^{2} x_{1}^{18} + 66 x_{1}^{20} + 55 x_{0}^{18} + 180 x_{0}^{16} x_{1}^{2} + 360 x_{0}^{14} x_{1}^{4} + 560 x_{0}^{12} x_{1}^{6} + 735 x_{0}^{10} x_{1}^{8} + 840 x_{0}^{8} x_{1}^{10} + 840 x_{0}^{6} x_{1}^{12} + 720 x_{0}^{4} x_{1}^{14} + 495 x_{0}^{2} x_{1}^{16} + 220 x_{1}^{18} + 165 x_{0}^{16} + 600 x_{0}^{14} x_{1}^{2} + 1260 x_{0}^{12} x_{1}^{4} + 1960 x_{0}^{10} x_{1}^{6} + 2450 x_{0}^{8} x_{1}^{8} + 2520 x_{0}^{6} x_{1}^{10} + 2100 x_{0}^{4} x_{1}^{12} + 1320 x_{0}^{2} x_{1}^{14} + 495 x_{1}^{16} + 330 x_{0}^{14} + 1260 x_{0}^{12} x_{1}^{2} + 2646 x_{0}^{10} x_{1}^{4} + 3920 x_{0}^{8} x_{1}^{6} + 4410 x_{0}^{6} x_{1}^{8} + 3780 x_{0}^{4} x_{1}^{10} + 2310 x_{0}^{2} x_{1}^{12} + 792 x_{1}^{14} + 462 x_{0}^{12} + 1764 x_{0}^{10} x_{1}^{2} + 3528 x_{0}^{8} x_{1}^{4} + 4704 x_{0}^{6} x_{1}^{6} + 4410 x_{0}^{4} x_{1}^{8} + 2772 x_{0}^{2} x_{1}^{10} + 924 x_{1}^{12} + 462 x_{0}^{10} + 1680 x_{0}^{8} x_{1}^{2} + 3024 x_{0}^{6} x_{1}^{4} + 3360 x_{0}^{4} x_{1}^{6} + 2310 x_{0}^{2} x_{1}^{8} + 792 x_{1}^{10} + 330 x_{0}^{8} + 1080 x_{0}^{6} x_{1}^{2} + 1620 x_{0}^{4} x_{1}^{4} + 1320 x_{0}^{2} x_{1}^{6} + 495 x_{1}^{8} + 165 x_{0}^{6} + 450 x_{0}^{4} x_{1}^{2} + 495 x_{0}^{2} x_{1}^{4} + 220 x_{1}^{6} + 55 x_{0}^{4} + 110 x_{0}^{2} x_{1}^{2} + 66 x_{1}^{4} + 11 x_{0}^{2} + 12 x_{1}^{2} + 1}{x_{0}^{12} x_{1}^{11}}\right] }}} {{{id=18| S2.b_matrix_class(); S2.b_matrix_class(up_to_equivalence=False) /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rr} 0 & 2 \\ -2 & 0 \end{array}\right)\right] \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rr} 0 & 2 \\ -2 & 0 \end{array}\right), \left(\begin{array}{rr} 0 & -2 \\ 2 & 0 \end{array}\right)\right] }}} {{{id=163| VV = S2.variable_class(depth=3); DD = map(denominator,VV) /// Found a bipartite seed - restarting the depth counter at zero and constructing the variable class using its bipartite belt. }}} {{{id=20| DD /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[1, 1, x_{0}, x_{0}^{2} x_{1}, x_{0}^{3} x_{1}^{2}, x_{0}^{4} x_{1}^{3}, x_{0}^{5} x_{1}^{4}, x_{0}^{6} x_{1}^{5}, x_{0}^{7} x_{1}^{6}, x_{0}^{8} x_{1}^{7}, x_{0}^{9} x_{1}^{8}, x_{0}^{10} x_{1}^{9}, x_{0}^{11} x_{1}^{10}, x_{0}^{12} x_{1}^{11}\right] }}} {{{id=21| [monom.degrees() for monom in DD] /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(0, 0\right), \left(0, 0\right), \left(1, 0\right), \left(2, 1\right), \left(3, 2\right), \left(4, 3\right), \left(5, 4\right), \left(6, 5\right), \left(7, 6\right), \left(8, 7\right), \left(9, 8\right), \left(10, 9\right), \left(11, 10\right), \left(12, 11\right)\right] }}} {{{id=133| /// }}} {{{id=132| S33 = ClusterSeed(['A',[3,3],1]); S33 /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|6|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|[3,|\phantom{x}\verb|3],|\phantom{x}\verb|1]| }}} {{{id=134| S33.show() /// }}} {{{id=39| MC = S33.b_matrix_class(); MC /// WARNING: Output truncated! full_output.txt \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -1 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ -1 & 0 & 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 0 & -1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 1 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ ... 0 & 1 & 1 & 0 & -1 & -1 \\ -1 & 0 & -1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 & 1 \\ 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & -1 & 0 & -1 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & -1 \\ 0 & -1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & -1 \\ 0 & -1 & 0 & -1 & 0 & 1 \\ -1 & 0 & 0 & 1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 1 \\ -1 & 0 & 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 1 & 0 & -1 \\ 0 & -1 & -1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 1 & 1 & -2 \\ 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & -1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & -2 \\ 0 & -1 & -1 & 0 & 0 & 1 \\ -1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 2 & -1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -2 \\ 0 & -1 & 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 & 1 \\ 0 & 2 & -1 & 0 & -1 & 0 \end{array}\right)\right] }}} {{{id=40| B = MC[5]; B /// \newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrrrrr} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & -1 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & -1 & 0 & 0 \end{array}\right) }}} {{{id=41| Snew = ClusterSeed(B); Snew; Snew.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|6| }}} {{{id=42| Snew2 = Snew.principal_extension(); Snew2; Snew2.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|6|\phantom{x}\verb|with|\phantom{x}\verb|6|\phantom{x}\verb|frozen|\phantom{x}\verb|variables| }}} {{{id=43| Snew2.mutation_type() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|['A',|\phantom{x}\verb|[3,|\phantom{x}\verb|3],|\phantom{x}\verb|1]| }}} {{{id=44| Snew2 /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|6|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|[3,|\phantom{x}\verb|3],|\phantom{x}\verb|1]|\phantom{x}\verb|with|\phantom{x}\verb|6|\phantom{x}\verb|frozen|\phantom{x}\verb|variables| }}} {{{id=45| QuiverMutationType? ///

File: /Users/sage/sage/local/lib/python2.6/site-packages/sage/combinat/cluster_algebra_quiver/quiver_mutation_type.py

Type: <class ‘sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationTypeFactory’>

Definition: QuiverMutationType(*args)

Docstring:

Quiver mutation types can be seen as a slight generalization of generalized Cartan types.

Background on generalized Cartan types can be found at

http://en.wikipedia.org/wiki/Generalized_Cartan_matrix

For the compendium on the cluster algebra and quiver package in Sage see

http://arxiv.org/abs/1102.4844

A B-matrix is a skew-symmetrizable ( n x n )-matrix M. I.e., there exists an invertible diagonal matrix D such that DM is skew-symmetric. M can be encoded as a quiver by having a directed edge from vertex i to vertex j with label (a,b) if a = M_{i,j} > 0 and b = M_{j,i} < 0. We consider quivers up to mutation equivalence.

In particular, to a quiver mutation type we can associate a generalized Cartan type by sending M to the generalized Cartan matrix C(M) obtained by replacing all positive entries by their negatives and adding 2‘s on the main diagonal.

It appears that C(M) and C(M') are isomorphic Cartan types for mutation equivalent skew-symmetrizable matrices M and M'. Thus, all generalized Cartan types appear as well as quiver mutation types.

AUTHOR:
– Gregg Musiker – Christian Stump

Constructs a quiver mutation type object. For the possible different types, please see the compendium. Kac’s classification types can also be used as input.

INPUT:

  • letter, rank – letter is one of ‘A’,’B’,’C’,’D’,’E’,’F’,’G’ and rank is an integer
  • letter, rank, twist – letter is one of ‘A’,’BB’,’CC’,’D’,’E’,’F’,’G’, ‘BC’, ‘BD’, ‘CD’, and rank is a tuple (b,c) or an integer and twist is an integer
  • object – a quiver mutation type

EXAMPLES:

Finite types:

sage: QuiverMutationType('A',1)
['A', 1]
sage: QuiverMutationType('A',5)
['A', 5]

sage: QuiverMutationType('B',2)
['B', 2]
sage: QuiverMutationType('B',5)
['B', 5]

sage: QuiverMutationType('C',2)
['B', 2]
sage: QuiverMutationType('C',5)
['C', 5]

sage: QuiverMutationType('D',2)
[ ['A', 1], ['A', 1] ]
sage: QuiverMutationType('D',3)
['A', 3]
sage: QuiverMutationType('D',4)
['D', 4]

sage: QuiverMutationType('E',6)
['E', 6]
sage: QuiverMutationType('E',7)
['E', 7]
sage: QuiverMutationType('E',8)
['E', 8]

sage: QuiverMutationType('F',4)
['F', 4]

sage: QuiverMutationType('G',2)
['G', 2]

Affine types:

sage: QuiverMutationType('A',(1,1),1)
['A', [1, 1], 1]
sage: QuiverMutationType('A',(2,4),1)
['A', [2, 4], 1]

sage: QuiverMutationType('BB',1,1)
['A', [1, 1], 1]
sage: QuiverMutationType('BB',2,1)
['BB', 2, 1]
sage: QuiverMutationType('BB',4,1)
['BB', 4, 1]

sage: QuiverMutationType('CC',1,1)
['A', [1, 1], 1]
sage: QuiverMutationType('CC',2,1)
['CC', 2, 1]
sage: QuiverMutationType('CC',4,1)
['CC', 4, 1]

sage: QuiverMutationType('BC',1,1)
['BC', 1, 1]
sage: QuiverMutationType('BC',5,1)
['BC', 5, 1]

sage: QuiverMutationType('BD',3,1)
['BD', 3, 1]
sage: QuiverMutationType('BD',5,1)
['BD', 5, 1]

sage: QuiverMutationType('CD',3,1)
['CD', 3, 1]
sage: QuiverMutationType('CD',5,1)
['CD', 5, 1]

sage: QuiverMutationType('D',4,1)
['D', 4, 1]
sage: QuiverMutationType('D',6,1)
['D', 6, 1]

sage: QuiverMutationType('E',6,1)
['E', 6, 1]
sage: QuiverMutationType('E',7,1)
['E', 7, 1]
sage: QuiverMutationType('E',8,1)
['E', 8, 1]

sage: QuiverMutationType('F',4,1)
['F', 4, 1]
sage: QuiverMutationType('F',4,-1)
['F', 4, -1]

sage: QuiverMutationType('G',2,1)
['G', 2, 1]
sage: QuiverMutationType('G',2,-1)
['G', 2, -1]

Elliptic types:

sage: QuiverMutationType('E',6,[1,1])
['E', 6, [1, 1]]
sage: QuiverMutationType('E',7,[1,1])
['E', 7, [1, 1]]
sage: QuiverMutationType('E',8,[1,1])
['E', 8, [1, 1]]

Mutation finite types:

rank 2 cases:

sage: QuiverMutationType('R2',(1,1),2)
['A', 2]
sage: QuiverMutationType('R2',(1,2),2)
['B', 2]
sage: QuiverMutationType('R2',(1,3),2)
['G', 2]
sage: QuiverMutationType('R2',(1,4),2)
['BC', 1, 1]
sage: QuiverMutationType('R2',(1,5),2)
['R2', [1, 5], 2]
sage: QuiverMutationType('R2',(2,2),2)
['A', [1, 1], 1]
sage: QuiverMutationType('R2',(3,5),2)
['R2', [3, 5], 2]

exceptional quiver mutation types:

sage: QuiverMutationType('V',4,2)
['V', 4, 2]
sage: QuiverMutationType('W',4,2)
['W', 4, 2]
sage: QuiverMutationType('W',4,-2)
['W', 4, -2]
sage: QuiverMutationType('X',6,2)
['X', 6, 2]
sage: QuiverMutationType('Y',6,2)
['Y', 6, 2]
sage: QuiverMutationType('Z',6,2)
['Z', 6, 2]
sage: QuiverMutationType('Z',6,-2)
['Z', 6, -2]

Mutation infinite types:

infinite type E:

sage: QuiverMutationType('E',9,3)
['E', 8, 1]
sage: QuiverMutationType('E',10,3)
['E', 10, 3]
sage: QuiverMutationType('E',12,3)
['E', 12, 3]

sage: QuiverMutationType('AE',(1,1),3)
['AE', [1, 1], 3]
sage: QuiverMutationType('AE',(1,4),3)
['AE', [1, 4], 3]
sage: QuiverMutationType('BE',5,3)
['BE', 5, 3]
sage: QuiverMutationType('CE',5,3)
['CE', 5, 3]
sage: QuiverMutationType('DE',6,3)
['DE', 6, 3]

Grassmannian types:

sage: QuiverMutationType('GR',(2,4),3)
['A', 1]
sage: QuiverMutationType('GR',(2,6),3)
['A', 3]
sage: QuiverMutationType('GR',(3,6),3)
['D', 4]
sage: QuiverMutationType('GR',(3,7),3)
['E', 6]
sage: QuiverMutationType('GR',(3,8),3)
['E', 8]
sage: QuiverMutationType('GR',(3,10),3)
['GR', [3, 10], 3]

Triangular types:

sage: QuiverMutationType('TR',2,3)
['A', 3]
sage: QuiverMutationType('TR',3,3)
['D', 6]
sage: QuiverMutationType('TR',4,3)
['E', 8, [1, 1]]
sage: QuiverMutationType('TR',5,3)
['TR', 5, 3]

T types:

sage: QuiverMutationType('T',(1,1,1),3)
['A', 1]
sage: QuiverMutationType('T',(1,1,4),3)
['A', 4]
sage: QuiverMutationType('T',(1,4,4),3)
['A', 7]
sage: QuiverMutationType('T',(2,2,2),3)
['D', 4]
sage: QuiverMutationType('T',(2,2,4),3)
['D', 6]
sage: QuiverMutationType('T',(2,3,3),3)
['E', 6]
sage: QuiverMutationType('T',(2,3,4),3)
['E', 7]
sage: QuiverMutationType('T',(2,3,5),3)
['E', 8]
sage: QuiverMutationType('T',(2,3,6),3)
['E', 8, 1]
sage: QuiverMutationType('T',(2,3,7),3)
['E', 10, 3]
sage: QuiverMutationType('T',(3,3,3),3)
['E', 6, 1]
sage: QuiverMutationType('T',(3,3,4),3)
['T', [3, 3, 4], 3]

Reducible types:

sage: QuiverMutationType(['A',3],['B',4])
[ ['A', 3], ['B', 4] ]
}}} {{{id=135| Gr = ClusterSeed(['GR',[4,9],3]); Gr; Gr.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|12|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['GR',|\phantom{x}\verb|[4,|\phantom{x}\verb|9],|\phantom{x}\verb|3]| }}} {{{id=136| Gr.is_mutation_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{False} }}} {{{id=137| Gr2 = ClusterSeed(['GR',[4,8],3]); Gr2; /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|9|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['E',|\phantom{x}\verb|7,|\phantom{x}\verb|[1,|\phantom{x}\verb|1]]| }}} {{{id=139| Gr2.is_mutation_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=140| Tr = ClusterSeed(['TR',5,3]); Tr; Tr.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|15|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['TR',|\phantom{x}\verb|5,|\phantom{x}\verb|3]| }}} {{{id=138| NSL = ClusterSeed(['F',4,1]); NSL; NSL.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|5|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['F',|\phantom{x}\verb|4,|\phantom{x}\verb|1]| }}} {{{id=141| NSL2 = ClusterSeed(['F',4,-1]); NSL2; NSL2.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|5|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['F',|\phantom{x}\verb|4,|\phantom{x}\verb|-1]| }}} {{{id=142| BB = NSL.b_matrix_class(); len(BB); /// \newcommand{\Bold}[1]{\mathbf{#1}}60 }}} {{{id=144| BB /// WARNING: Output truncated! full_output.txt \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & -1 & -2 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -2 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & 0 & 0 & 2 & 0 \\ 0 & 0 & -1 & 0 & -1 \\ 0 & -1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & -2 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ -1 & -2 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & -2 & 0 & 1 & 0 \\ 0 & 2 & -1 & 0 & 0 \\ -1 & -1 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 1 \\ -2 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ ... 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 1 & 0 & 0 & -1 & 1 \\ -1 & 2 & 2 & 0 & -2 \\ 0 & -1 & -1 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & -2 & 0 \\ 2 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 2 & 1 & -2 & -2 \\ -1 & 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 0 & 2 \\ 1 & -1 & 0 & 0 & 0 \\ 1 & -1 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 0 & 2 & -2 \\ -1 & 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & -1 \\ -1 & 0 & -1 & 0 & 1 \\ 1 & -1 & 1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 0 & -1 & 1 \\ -2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 2 & -1 & -2 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & -1 & 0 & 0 & 1 \\ 2 & 0 & 1 & -2 & 0 \\ 0 & -1 & 0 & 2 & 0 \\ 0 & 1 & -1 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & -1 & 0 & 0 & 1 \\ -1 & 2 & 0 & 0 & -2 \\ 0 & -1 & -1 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & -1 & 0 & 1 & 1 \\ 2 & 0 & 1 & 0 & -2 \\ 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 & 1 \\ 0 & 2 & 0 & -1 & -1 \\ -1 & -2 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 1 & 0 & -2 & 1 \\ -2 & 0 & 1 & 2 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 & 0 \end{array}\right)\right] }}} {{{id=143| BB2 = NSL2.b_matrix_class(); len(BB2) /// \newcommand{\Bold}[1]{\mathbf{#1}}60 }}} {{{id=145| BB2 = NSL2.b_matrix_class(up_to_equivalence=False); len(BB2) /// \newcommand{\Bold}[1]{\mathbf{#1}}720 }}} {{{id=146| for Mat in BB: if Mat in BB2: print("Found Matrix") print("Done") /// Done }}} {{{id=49| NSL.interact() /// }}} {{{id=50| EE7 = ClusterSeed(['E',7]); EE7.show() /// }}} {{{id=99| VC = EE7.variable_class(); len(VC) /// \newcommand{\Bold}[1]{\mathbf{#1}}70 }}} {{{id=54| VC[35] /// \newcommand{\Bold}[1]{\mathbf{#1}}\frac{x_{0} x_{2}^{2} x_{4}^{2} + x_{1} x_{3}^{2} x_{5} x_{6} + x_{0} x_{2}^{2} x_{4} + x_{0} x_{2} x_{3} x_{5} + x_{1} x_{3} x_{4} x_{6} + x_{0} x_{2} x_{4} + x_{2} x_{4}^{2} + x_{1} x_{3} x_{6} + x_{0} x_{2} + x_{2} x_{4} + x_{3} x_{5} + x_{4} + 1}{x_{1} x_{2} x_{3} x_{4} x_{5}} }}} {{{id=60| for i in range(len(VC)): if max(VC[i].denominator().exponents()[0]) > 1: print(i) /// 34 38 41 43 44 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 }}} {{{id=61| VC[34] /// \newcommand{\Bold}[1]{\mathbf{#1}}\frac{x_{1}^{2} x_{3}^{2} x_{6}^{2} + x_{0} x_{2}^{3} x_{4} + x_{0} x_{1} x_{2} x_{3} x_{6} + x_{1} x_{2} x_{3} x_{4} x_{6} + x_{0} x_{2}^{2} x_{4} + x_{1} x_{2} x_{3} x_{6} + x_{0} x_{2}^{2} + x_{2}^{2} x_{4} + 2 x_{1} x_{3} x_{6} + x_{0} x_{2} + x_{2} x_{4} + x_{2} + 1}{x_{1} x_{2}^{2} x_{3} x_{6}} }}} {{{id=67| X = ClusterSeed(['X',6,2]); X; X.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|6|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['X',|\phantom{x}\verb|6,|\phantom{x}\verb|2]| }}} {{{id=68| S = ClusterSeed(['X',7,2]); S; S.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|7|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['X',|\phantom{x}\verb|7,|\phantom{x}\verb|2]| }}} {{{id=71| X.is_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{False} }}} {{{id=69| X.is_mutation_finite() /// \newcommand{\Bold}[1]{\mathbf{#1}}\mathrm{True} }}} {{{id=70| V = ClusterSeed(['V',4,2]); V; V.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|4|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['V',|\phantom{x}\verb|4,|\phantom{x}\verb|2]| }}} {{{id=72| VMC = V.b_matrix_class(); len(VMC); VMC /// \newcommand{\Bold}[1]{\mathbf{#1}}7 \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rrrr} 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -3 \\ 3 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & -3 & 0 & 1 \\ 1 & 0 & 1 & -1 \\ 0 & -1 & 0 & 1 \\ -1 & 3 & -3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & -1 & 0 & 1 \\ 3 & 0 & 1 & -3 \\ 0 & -1 & 0 & 3 \\ -1 & 1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 2 & -1 & 0 \\ -2 & 0 & 1 & 0 \\ 3 & -3 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 0 & 0 & -2 & 3 \\ 0 & 2 & 0 & -3 \\ -1 & -1 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & -2 & 0 \\ -1 & 0 & 1 & 1 \\ 2 & -3 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & -2 & 0 & 1 \\ -1 & 3 & -3 & 0 \end{array}\right)\right] }}} {{{id=81| WW = ClusterSeed(['W',4,2]); WW; WW.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|4|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['W',|\phantom{x}\verb|4,|\phantom{x}\verb|2]| }}} {{{id=147| WW2 = ClusterSeed(['W',4,-2]); WW2; WW2.show() /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|4|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['W',|\phantom{x}\verb|4,|\phantom{x}\verb|-2]| }}} {{{id=148| WW.b_matrix_class() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rrrr} 0 & 1 & 1 & -2 \\ -3 & 0 & 0 & 3 \\ -1 & 0 & 0 & 1 \\ 2 & -1 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & -1 & 1 & 1 \\ 3 & 0 & 0 & -3 \\ -1 & 0 & 0 & 1 \\ -1 & 1 & -1 & 0 \end{array}\right)\right] }}} {{{id=149| WW2.b_matrix_class() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\begin{array}{rrrr} 0 & 3 & 1 & -2 \\ -1 & 0 & 0 & 1 \\ -1 & 0 & 0 & 1 \\ 2 & -3 & -1 & 0 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 0 & -1 \\ -3 & 0 & 1 & 1 \\ 0 & -1 & 0 & 1 \\ 3 & -1 & -1 & 0 \end{array}\right)\right] }}} {{{id=97| So4 = Matrix([[0,-1,2,-1],[1,0,-3,2],[-2,3,0,-1],[1,-2,1,0]]) /// }}} {{{id=150| Somos4 = ClusterSeed(So4); Somos4 /// \newcommand{\Bold}[1]{\mathbf{#1}}\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|4| }}} {{{id=95| Somos4.set_cluster([1,1,1,1]) /// }}} {{{id=77| Somos4.show() /// }}} {{{id=151| Somos4.mutate([0,1,2,3]); Somos4.show(); Somos4.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[2, 3, 7, 23\right] }}} {{{id=152| Somos4.mutate([0,1,2,3]); Somos4.show(); Somos4.cluster() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[59, 314, 1529, 8209\right] }}} {{{id=153| Somos4.mutation_sequence([0,1,2,3,0,1,2,3],return_output='var') /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[83313, 620297, 7869898, 126742987, 1687054711, 47301104551, 1123424582771, 32606721084786\right] }}} {{{id=154| /// }}} {{{id=159| /// }}} {{{id=160| /// }}} {{{id=162| /// }}}