## page was renamed from SymbolicBenchmarks ||<-2 rowstyle="background-color: #FFFFE0;">Problem Key || || $\rightarrow$ || simplify || || $A(...)$ || assume ... || || $S(...,x)$ || solve ... for $x$ || || $T(...,x=b)$ || Taylor series of ... based at b|| || (p.v.) || principal value || || (div) || divergent || ||<-2 rowstyle="background-color: #FFFFE0;">Performance Key || || $\times$ || wrong answer/cannot do the problem || || $s\ sec/ms/\mu s$ || performs correctly in time $s$ || || $> s\ sec/ms/\mu s$ || does not finish in time $s$ || || >.<,$s$ or >.<,$\times$ || very difficult to convince system to do what you want (regardless of performance) || ||Problem || Maple || Mathematica || GiNaC || Maxima || Sage || Symbolics || Notes (such as code used/version etc.) || || $\sqrt{2\sqrt{3} + 4} \rightarrow 1 + \sqrt{3}$ || || || || || $\times$ || || || || $2\infty - 3 \rightarrow \infty$ || || || || || s 47.2 µs || || || || $\frac{e^x-1}{e^{x/2}+1} \rightarrow e^{x/2} - 1$ || || || || || s 2.59 ms || || || || $A(x \geq y, y \geq z, z \geq x); x = z?$ || || || || || s 1.57 ms || || || || $A(x > y, y > 0); 2x^2 > 2y^2?$ || || || || || || || || || $\frac{\cos(3x)}{\cos x} \rightarrow \cos^2 x - 3\sin^2 x$ || || || || || || || || || $\frac{\cos(3x)}{\cos x} \rightarrow 2\cos(2x) - 1$ || || || || || || || || || $A(x,y > 0); x^{1/n}y^{1/n} - (xy)^{1/n} \rightarrow 0$ || || || || || || || || || $\log(\tan(\frac{1}{2}x + \frac{\pi}{4})) - \sinh^{-1}(\tan(x)) \rightarrow 0$ || || || || || || || || || $\log\frac{2\sqrt{r} + 1}{\sqrt{4r + 4\sqrt{r} + 1}} \rightarrow 0$ || || || || || || || || || $\frac{\sqrt{xy|z|^2}}{\sqrt{x}|z|} \rightarrow \frac{\sqrt{xy}}{\sqrt{x}} \not\rightarrow \sqrt{y}$ || || || || || s 2.11 ms || || Note $\sqrt{x} = \pm\sqrt{x}$ || || $\frac{x=0}{2}+1 \rightarrow \frac{x}{2}+1=1$ || || || || || || || || || $S(e^{2x} + 2e^x + 1 = z,x)$ || || || || || s 4.85 ms || || || || $S((x+1)(\sin^2x + 1)^2\cos^3(3x)=0,x)$ || || || || || || || || || $M^{-1}$, where $M = [[x,1],[y,e^z]]$ || || || || || s 3.93 ms || || || || $\sum_{k=1}^n k^3 \rightarrow \frac{n^2(n+1)^2}{4}$ || || || || || s 24.6 ms || || || || $\sum_{k=1}^\infty(\frac{1}{k^2} + \frac{1}{k^3}) \rightarrow \frac{\pi^2}{6} + \zeta(3)$ || || || || || || || || || $\prod_{k=1}^nk \rightarrow n!$ || || || || || s 5.82 ms || || || || $\lim_{n\rightarrow\infty}(1 + \frac{1}{n})^n \rightarrow e$ || || || || || s 6.93 ms || || || || $\lim_{x\rightarrow 0}\frac{\sin x}{x} \rightarrow 1$ || || || || || s 5.95 ms || || || || $\lim_{x\rightarrow 0}\frac{1-\cos x}{x^2} \rightarrow \frac{1}{2}$ || || || || || || || || || $\frac{d^2}{dx^2}y(x(t)) \rightarrow \frac{d^2y}{dx^2}(\frac{dx}{dt})^2 + \frac{dy}{dx}\frac{d^2x}{dt^2}$ || || || || || || || || || $\frac{d}{dx}(\int\frac{1}{x^3+2}dx) \rightarrow \frac{1}{x^3+2}$ || || || || || || || || || $\int\frac{1}{a+b\cos x}dx (a < b)$ || || || || || || || || || $\frac{d}{dx}\int\frac{1}{a+b\cos x}dx = \frac{1}{a+b\cos x}$|| || || || || || || || || $\frac{d}{dx}|x| \rightarrow \frac{x}{|x|}$ || || || || || || || || || $\int|x|dx \rightarrow \frac{x|x|}{2}$ || || || || || || || || || $\int\frac{x}{\sqrt{1+x}+\sqrt{1-x}}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}$ || || || || || || || || || $\int\frac{\sqrt{1+x}+\sqrt{1-x}}{2}dx \rightarrow \frac{(1+x)^{3/2}+(1-x)^{3/2}}{3}$ || || || || || || || || || $\int_{-1}^1\frac{1}{x}dx \rightarrow 0$ (p.v.) || || || || || || || || || $\int_{-1}^1\frac{1}{x^2}dx \rightarrow$ (div) || || || || || || || || || $\int_0^1\sqrt{x + \frac1x - 2}dx \rightarrow \frac43$ || || || || || || || || || $\int_1^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{4-\sqrt8}3$|| || || || || || || || || $\int_0^2\sqrt{x + \frac1x - 2}dx \rightarrow \frac{8-\sqrt8}3$|| || || || || || || || || $A(a>0); \int_{-\infty}^\infty\frac{\cos x}{x^2+a^2}dx \rightarrow \frac\pi ae^{-a}$|| || || || || || || || || $A(0 < a < 1); \int_0^\infty\frac{t^{a-1}}{t+1}dt \rightarrow \frac{\pi}{\sin(\pi a)}$|| || || || || || || || || $T(\frac1{\sqrt{1-(x/c)^2}},x=0)$ || || || || || || || || || $T((\log x)^ae^{-bx},x=1)$ || || || || || || || || || $T(\log(\sinh z) + \log(\cosh(z + w)))$ || || || || || || || || || $T(\log(\frac{\sin x}{x}), x=0)$ || || || || || s 5.19 ms || || at order 20 ||