## Some ideas for efficient implementation of algorithms for polynomial matrix computations

# SageFlintDays, University of Warwick, December 18, 2011 

Arne Storjohann
University of Waterloo

Introduction: integers versus univariate polynomials

## Integers:

- well suited ring for a binary computer
$\rightarrow$ array of limbs of 64 bits each
- primes are quite dense
$\rightarrow$ prime number theorem: there are about $N / \ln N$ primes $\leq N$
$\rightarrow$ more than $10^{15} 64$-bit primes
$\rightarrow$ enough for all practical purposes
Polynomials $\mathrm{K}[x]$ :
- dense, sparse, supersparse (lacunary)?
- what is the coefficient field K ?
$\rightarrow \mathrm{K}=\mathbb{Z} /(p), \mathrm{K}=\mathrm{GF}(2), \mathrm{K}=\mathbb{Q}$
$\rightarrow \mathrm{K}$ an extension field of one of the above
- and then... what about
multivariate? coeffcient ring not a field?

The core problem: Polynomial matrix multiplication
Representation:

- matrices of polynomials:

$$
F=\left[\begin{array}{cc}
x+1 & 4 x^{2}+3 x \\
4 x^{2}+3 x+1 & 4 x^{2}+6 x+2
\end{array}\right]
$$

- polynomials with matrix coefficients:

$$
F=\left[\begin{array}{ll}
0 & 4 \\
4 & 4
\end{array}\right] x^{2}+\left[\begin{array}{ll}
1 & 3 \\
3 & 6
\end{array}\right] x+\left[\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right]
$$

- compact:

$$
F=\left[\begin{array}{ll|l|ll}
0 & 4 & 1 & 3 & 1 \\
4 & 4 & 0 \\
3 & 6 & 1 & 2
\end{array}\right]
$$

Methods:

1. triply nested for loop using polynomial multiplication (easiest)
2. via integer matrix multiplication: bit packing (FLINT [Frederik J.])
3. evaluation and interpolation (asymtoticaly fastest) $\rightarrow$ in-place truncated FFT [Harvey and Roche, 2010]?

## Organization of the Integer Matrix Library: IML



## Organization of the Polynomial Matrix Library: PML?



Example of linear solving: $\mathrm{K}=\mathbb{Z} /(7), n=5, d=2$

## Input:

$$
A=\left[\begin{array}{ccccc}
6 x^{2}+6 x+4 & 2 x^{2}+2 x+5 & 3 x^{2}+2 x+1 & 5 x+3 & 2 x^{2}+6 x+6 \\
4 x^{2}+4 x & 2 x^{2}+5 x+3 & 5 x+4 & 3 x^{2}+5 x & 4 x^{2}+x+1 \\
6 x^{2}+2 & 2 x^{2}+x+6 & 4 x^{2}+2 x+2 & 4 x^{2}+5 x+1 & x^{2}+x \\
3 x^{2}+x+4 & 5 x+6 & 4 x^{2}+2 x+1 & 2 x^{2}+6 x+2 & 3 x^{2}+x \\
x^{2}+2 x+6 & 2 x^{2}+5 x+5 & 4 x^{2}+4 x & 6 & x^{2}+x+3
\end{array}\right] \quad b=\left[\begin{array}{c}
x^{2}+x+2 \\
5 x^{2}+x+2 \\
3 x^{2}+3 x+5 \\
x^{2}+5 x+3 \\
2 x+2
\end{array}\right]
$$

## Output:

$$
\left[\begin{array}{c}
\frac{4 x^{9}+2 x^{8}+5 x^{7}+6 x^{6}+x^{5}+3 x^{4}+6 x^{3}+2 x+2}{4 x^{10}+x^{9}+3 x^{8}+4 x^{7}+4 x^{6}+2 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+5 x+3} \\
\frac{6 x^{10}+2 x^{9}+x^{7}+3 x^{6}+x^{5}+6 x^{4}+3 x^{3}+6 x^{2}+2 x+1}{4 x^{10}+x^{9}+3 x^{8}+4 x^{7}+4 x^{6}+2 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+5 x+3} \\
\frac{x^{10}+5 x^{9}+6 x^{8}+3 x^{6}+5 x^{5}+3 x^{4}+5 x^{3}+x^{2}+3 x+5}{4 x^{10}+x^{9}+3 x^{8}+4 x^{7}+4 x^{6}+2 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+5 x+3} \\
\frac{3 x^{10}+3 x^{9}+6 x^{8}+6 x^{7}+5 x^{6}+5 x^{4}+6 x^{3}+x^{2}+x+2}{4 x^{10}+x^{9}+3 x^{8}+4 x^{7}+4 x^{6}+2 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+5 x+3} \\
\frac{5 x^{10}+4 x^{9}+5 x^{8}+2 x^{7}+x^{6}+2 x^{5}+5 x^{4}+5 x^{3}+3 x^{2}+6 x+4}{4 x^{10}+x^{9}+3 x^{8}+4 x^{7}+4 x^{6}+2 x^{5}+6 x^{4}+6 x^{3}+2 x^{2}+5 x+3}
\end{array}\right]
$$

Outline of $Y$-adic lifting for system solving

1. Radix expansion of solution: $Y=x^{2}$

$$
\frac{5 x^{2}+6 x+3}{x^{2}+4 x+3} \equiv(1+3 x)+(2+x) Y+(1+5 x) Y^{2} \quad\left(\bmod Y^{3}\right)
$$

2. Radix conversion:

$$
(1+3 x)+(2+x) Y+(1+5 x) Y^{2}=1+3 x+2 x^{2}+x^{3}+x^{4}+5 x^{5}
$$

3. Rational function reconstruction:

$$
\frac{5 x^{2}+6 x+3}{x^{2}+4 x+3} \equiv 1+3 x+2 x^{2}+x^{3}+x^{4}+5 x^{5} \quad\left(\bmod x^{5}\right)
$$

Nonsingular rational system solving over $\mathrm{K}[x]$ via lifting
Input: $A \in \mathrm{~K}[x]^{n \times n}$ and $b \in \mathrm{~K}[x]^{n \times 1}$ of degree $d$
Compute: $A^{-1} b \in \mathrm{~K}(x)$
Method:

1. Choose $Y \in \mathrm{~K}[x]$ such that $\operatorname{gcd}(Y, \operatorname{det} A)=1$

Set $k=\lceil 2 n d / \operatorname{deg} Y\rceil$
2. Compute $B=\operatorname{Rem}\left(A^{-1}, Y\right)$
3. $r:=b$

$$
\begin{aligned}
\text { for } i & =0 \text { to } k-1 \text { do } & & \\
v_{i} & :=\operatorname{Rem}(B r, Y) & & \text { \# deg } v_{i}<\operatorname{deg} Y \\
r & :=\left(r-A v_{i}\right) / Y & & \# \operatorname{deg} r<d
\end{aligned}
$$

4. Reconstruct $A^{-1} b$ from $A^{-1} b \equiv v_{0}+v_{1} Y+\cdots+v_{k-1} Y^{k-1} \bmod Y^{k}$
$\rightarrow$ what should degree of $Y$ be?
$\rightarrow$ what should factorization of $Y$ be?

Lifting using a "lifting basis"

1. Select of modulus:
$Y=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{\operatorname{deg} Y}\right)$
$Z=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right) \cdots\left(x-\beta_{d}\right)$ with $\operatorname{gcd}(Z, Y)=1$
2. Initialization:
old: $B:=\operatorname{Rem}\left(A^{-1}, Y\right)$
new: $\left(B_{1}, \ldots, B_{\operatorname{deg} Y}\right):=\left(\left(\left.A\right|_{x=\alpha_{1}}\right)^{-1}, \ldots,\left(\left.A\right|_{x=\alpha_{\operatorname{deg} Y} Y}\right)^{-1}\right)$

$$
\left(C_{1}, \ldots, C_{d}\right):=\left(\left.A\right|_{x=\beta_{1}}, \ldots,\left.A\right|_{x=\beta_{d}}\right)
$$

3(a). Lifting step:
old: $v_{i}:=\operatorname{Rem}(B r, Y)$
new: $\left(\left.\left(v_{i}\right)\right|_{x=\alpha_{1}}, \ldots,\left.\left(v_{i}\right)\right|_{x=\alpha_{\operatorname{deg} Y} Y}\right):=\left(\left.B_{1} r\right|_{x=\alpha_{1}}, \ldots, B_{\operatorname{deg} Y} r_{x=\alpha_{\operatorname{deg}} Y}\right)$
3(b). Residue update:
old: $r:=\left(r-A v_{i}\right) / Y$
new: $\left.r\right|_{x=\beta_{j}}:=\left(\left.r\right|_{x=\beta_{j}}-\left.C_{j}\left(v_{i}\right)\right|_{x=\beta_{j}}\right) \operatorname{Rem}\left(Y^{-1}, x-\beta_{j}\right)$ for $j=1, \ldots, d$

Lifting using a "lifting basis": main work
2. Initialization:
$\rightarrow \operatorname{deg} Y$ matrix inversions over K
3(a). Lifting steps:
$\rightarrow$ total 2 nd matrix $\times$ vector products over K
3(b). Residue updates:
$\rightarrow$ total 2 nd $\times(d / \operatorname{deg} Y)$ matrix $\times$ vector products over K
4. Reconstruct solution using interpolation + radix conversion + rational function reconstroction

Key optimizations:

- Choose $\operatorname{deg} Y$ to balance costs of phases 2 and 3 .
$\rightarrow$ can be automatically tuned
- Reduce the $2 n d$ using vector rational function reconstruction.
$\rightarrow$ decrease 2nd but increase cost of step 4
[Olesh \& Storjohann, 2007]

Linearization for polynomial lattice basis reduction
First consider Euclidean algorithm over $\mathbb{Z} /(7)[x]$

$$
\left[\begin{array}{c}
4 x^{3}+6 x^{2}+5 x+6 \\
4 x^{3}+2 x^{2}+3 x+5
\end{array}\right] \rightarrow\left[\begin{array}{c}
4 x^{3}+6 x^{2}+5 x+6 \\
3 x^{2}+5 x+6
\end{array}\right] \rightarrow\left[\begin{array}{l}
4 x^{2}+4 x+6 \\
3 x^{2}+5 x+6
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{c}
x+6 \\
0
\end{array}\right]
$$

Same idea works for lattice reduction of matrices (Note: $[d] \equiv$ a polynomial of degree $d$ )

Question: How to represent rows of the work matrix?

Linearization for lattice reduction of matrices
First consider Euclidean algorithm over $\mathbb{Z} /(7)[x]$

$$
\left[\begin{array}{l}
4 x^{3}+6 x^{2}+5 x+6 \\
4 x^{3}+2 x^{2}+3 x+5
\end{array}\right] \rightarrow\left[\begin{array}{c}
4 x^{3}+6 x^{2}+5 x+6 \\
3 x^{2}+5 x+6
\end{array}\right] \rightarrow\left[\begin{array}{l}
4 x^{2}+4 x+6 \\
3 x^{2}+5 x+6
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{c}
x+6 \\
0
\end{array}\right]
$$

Same idea works for lattice reduction of matrices
(Note: $[d] \equiv$ a polynomial of degree $d$ )

Question: How to represent rows of the work matrix?
Idea: also used in earlier version of FLINT

$$
\left[\begin{array}{c|c|c}
3 x^{2}+5 x+1 & 4 x+2 \\
\hline 4 x^{2}+2 & 6 x+2
\end{array}\right] \rightarrow\left[\begin{array}{lll|lll}
3 & 5 & 1 & 0 & 4 & 2 \\
\hline 4 & 0 & 2 & 0 & 6 & 2
\end{array}\right]
$$

From left equivalence to similarity
Recall companion matrix: $1 \times 1$ matrix of degree 4

$$
\left[x^{4}+5 x^{3}+6 x^{2}+74 x+72\right] \longleftrightarrow x I_{4}-\left[\begin{array}{lll} 
& & -72 \\
1 & & -74 \\
& 1 & -6 \\
& & 1
\end{array}\right]
$$

Same idea works for matrices (sometimes): $2 \times 2$ matrix of degree 3

$$
\left[\begin{array}{c|c}
A & \\
x^{3}+2 x^{2}+6 x+6 & 4 x^{2}+4 x \\
\hline 2 x^{2}+5 x+3 & x^{3}+5 x+4
\end{array}\right] \longleftrightarrow x I_{6}-\left[\begin{array}{cc|c|cc} 
& & & C & -6 \\
& & & 0 \\
-3 & -4 \\
\hline 1 & & & -6 & -4 \\
\hline & & & -5 & -5 \\
\hline & 1 & -2 & -4 \\
& & 1 & -2 & 0
\end{array}\right]
$$

Idea: Compute $\operatorname{det} A$ by computing Frobenius form of $C$ in time $O\left((n d)^{3}\right)$

From left equivalence to similarity: general case Input:

$$
A=\left[\begin{array}{cc}
5 x^{2}+4 x+1 & x+1 \\
5 x+1 & 2 x+1
\end{array}\right]
$$

1. Random shift:

$$
B=\left.A\right|_{x=x-2}=\left[\begin{array}{cc}
5 x^{2}+5 x+6 & x+6 \\
5 x+5 & 2 x+4
\end{array}\right]
$$

2. Revert:

$$
C=\left.x^{2} B\right|_{x=1 / x}=\left[\begin{array}{cc}
6 x^{2}+5 x+5 & 6 x^{2}+x \\
5 x^{2}+5 x & 4 x^{2}+2 x
\end{array}\right]
$$

3. Normalize:

$$
D=\left[\begin{array}{ll}
6 & 6 \\
5 & 4
\end{array}\right]^{-1}\left[\begin{array}{cc}
6 x^{2}+5 x+5 & 6 x^{2}+x \\
5 x^{2}+5 x & 4 x^{2}+2 x
\end{array}\right]=\left[\begin{array}{cc}
x^{2}+4 x+6 & 6 x \\
5 x+3 & x^{2}
\end{array}\right]
$$

Partial linearization

- Cost of many algorithm highly sensitive to $\operatorname{deg} A$
- What if some entries in $A$ have large degree?
- Examples: $[t] \equiv$ a polynomial of degree $t$

$$
A=\left[\begin{array}{lll}
{[0]} & & {[5][18]} \\
& {[0]} & {[5][18]} \\
& & {[0][5][18]} \\
& & \\
& & {[6][18]} \\
& & {[19]}
\end{array}\right] \quad A=\left[\begin{array}{ccc}
{[19][1][5][3][19]} \\
{[4]} & {[6][3][6][0]} \\
{[0][0][0][0][0]} \\
{[17][6][0][0][0]} \\
{[19][0][0][0][0]}
\end{array}\right]
$$

Partial column linearization


- $\operatorname{deg} C=$ average column degree of $A$
- dimension of $C$ is less than $2 \times$ dimension of $A$
- no computation required, only rewriting
- $\operatorname{det} C=\operatorname{det} A, \operatorname{nullity}(C)=\operatorname{nullity}(A), C^{-1}=\left[\begin{array}{c|c}A^{-1} & * \\ \hline * & *\end{array}\right]$


## Partial row and column linearization

$$
\begin{aligned}
& A=\left[\begin{array}{ccccc}
{[19]} & {[1]} & {[5]} & {[3]} & {[19]} \\
{[4]} & {[6]} & {[3]} & {[6]} & {[0]} \\
{[0]} & {[0]} & {[0]} & {[0]} & {[0]} \\
{[17]} & {[6]} & {[0]} & {[0]} & {[0]} \\
{[19]} & {[0]} & {[0]} & {[0]} & {[0]}
\end{array}\right]
\end{aligned}
$$

- dimension of $C$ is $<3 \times(19+6+0+0+0) / 5=15$

