\widetilde{L}^{1} a quasi-linear LLL algorithm

Andy Novocin
University of Waterloo
joint with
Damien Stehlé and Gilles Villard

FLINT Sage Days (35), December 18, 2011

Goals for this talk

- My goal: Be useful to the audience

Goals for this talk

- My goal: Be useful to the audience
- Two potential types:

Goals for this talk

- My goal: Be useful to the audience
- Two potential types:
- competent but not LLL experts
- A gift for non-experts: an LLL for your toolbox (over ambitious?)

Goals for this talk

- My goal: Be useful to the audience
- Two potential types:
- LLL users, maybe experts
- A gift for non-experts: an LLL for your toolbox (over ambitious?)
- Reward for the others: the novel concepts in L

Goals for this talk

- My goal: Be useful to the audience
- Two potential types:
- competent but not LLL experts
- A gift for non-experts: an LLL for your toolbox (over ambitious?)

Goals for this talk

- My goal: Be useful to the audience
- Two potential types:
- LLL users, maybe experts
- A gift for non-experts: an LLL for your toolbox
- Reward for the others: the novel concepts in $\widetilde{\mathrm{L}}^{1}$

LLL: A wonderful problem solving tool
To use LLL you must know when it's possible to use LLL.

LLL: A wonderful problem solving tool

What type of problem can LLL attack?

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff\} which will satisfy some property.

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff\} which will satisfy some property.

Example Applications:

LLL: A wonderful problem solving tool

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff\} which will satisfy some property.

Example Applications:
Subset-sum, Knapsack, variants, etc.
Find a combination of $2.15,2.75,3.35,3.55,4.20,5.80$ which adds to exactly 15.05. (1 Mixed fruit, 2 orders of hot wings, and a sampler plate)

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff\} which will satisfy some property.

Example Applications:

Minimal Polynomials

Given $\alpha \approx-.78447320-1.96117174 \cdot \sqrt{-1}$
find minpoly $(\alpha) \cdot\left(x^{3}+2 x-7\right)$

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff\} which will satisfy some property.

Example Applications:

Algebraic number manipulation

Is there a combination of $\beta_{1}, \beta_{2}, \beta_{3} \in \mathbb{Q}(\alpha)$ whose 23 -adic image is $21+7 \cdot 23+11 \cdot 23^{2}+\cdots$?

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff $\}$ which will satisfy some property.

Example Applications:

Diophantine Approximation

Given $r_{1}, \ldots, r_{n} \in \mathbb{R}$ find rationals which approximate them each with the same small denominator.

LLL: A wonderful problem solving tool

What type of problem can LLL attack?
When you need to find an integer combination of \{some stuff $\}$ which will satisfy some property.

Example Applications:
Euclidean Algorithm
Given a, b find $\operatorname{gcd}(a, b)=s \cdot a+t \cdot b$.

Obligatory lattice intro

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

Obligatory lattice intro

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

$$
\equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

If the \mathbf{b}_{i} 's are linearly independent, they are called a basis.

Obligatory lattice intro

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

$$
\equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

If the \mathbf{b}_{i} 's are linearly independent, they are called a basis.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$
\left[\begin{array}{cc}
-2 & 1 \\
10 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right] .
$$

What LLL actually does.

A lattice reduction algorithm is given some basis and attempts to find a better basis.

What LLL actually does.

A lattice reduction algorithm is given some basis and attempts to find a better basis.

The output is a reduced basis, which is somewhat orthogonal.

What LLL actually does.

A lattice reduction algorithm is given some basis and attempts to find a better basis.

The output is a reduced basis, which is somewhat orthogonal.

In 1982 Lenstra, Lenstra, Lovász gave a polynomial time reduction algorithm (LLL).

What LLL actually does.

One Popular Lattice Question:

What LLL actually does.

One Popular Lattice Question:
Shortest non-zero vector (SVP)

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

Is NP-hard to find.

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)
Is NP-hard to find.

LLL approximately solves SVP in polynomial-time!

What LLL actually does.

One Popular Lattice Question:
Shortest non-zero vector (SVP) Is NP-hard to find.

LLL approximately solves SVP in polynomial-time!

When lucky and creative, approximate can be enough.

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$. Find a minimal polynomial for α.

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$. Find a minimal polynomial for α.

Make a lattice using $\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}$:

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 10000000000 & 0 \\
0 & 1 & 0 & 0 & -7844732000 & -19611717400 \\
0 & 0 & 1 & 0 & -32307963923 & 30769733412 \\
0 & 0 & 0 & 1 & 85689463459 & 39223434588
\end{array}\right)^{T}
$$

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$.
Find a minimal polynomial for α.
Make a lattice using $\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}$:

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 10000000000 & 0 \\
0 & 1 & 0 & 0 & -7844732000 & -19611717400 \\
0 & 0 & 1 & 0 & -32307963923 & 30769733412 \\
0 & 0 & 0 & 1 & 85689463459 & 39223434588
\end{array}\right)^{T}
$$

Let minpoly $(\alpha)=: c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$.

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$. Find a minimal polynomial for α.

Make a lattice using $\alpha^{0}, \alpha^{1}, \alpha^{2}, \alpha^{3}$:

$$
\left(\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 10000000000 & 0 \\
0 & 1 & 0 & 0 & -7844732000 & -19611717400 \\
0 & 0 & 1 & 0 & -32307963923 & 30769733412 \\
0 & 0 & 0 & 1 & 85689463459 & 39223434588
\end{array}\right)^{T}
$$

Let minpoly $(\alpha)=: c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$.
Then $\left(c_{0}, c_{1}, c_{2}, c_{3}, \epsilon, \epsilon\right) \in L$ and is smaller in size than the other vectors.

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$. Find a minimal polynomial for α.

The first 2 vectors found by LLL are:
$\left(\begin{array}{rrrrrr}-7 & 2 & 0 & 1 & -541 & -212 \\ 84502 & -313827 & -101869 & -77000 & -106913 & 266772\end{array}\right)^{T}$

Examples of combination problems \rightarrow lattice problems

Given an approximation $\alpha \approx-.78447320+1.96117174 \cdot \sqrt{-1}$.
Find a minimal polynomial for α.
The first 2 vectors found by LLL are:
$\left(\begin{array}{rrrrrr}-7 & 2 & 0 & 1 & -541 & -212 \\ 84502 & -313827 & -101869 & -77000 & -106913 & 266772\end{array}\right)^{T}$
We read this as saying that α is a root of $x^{3}+2 x-7$.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination of $2.15,2.75,3.35,3.55,4.20,5.80$ which adds to exactly 15.05 .

The lattice I created for this one:

$$
\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1505 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 215 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 275 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 335 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 355 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 420 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 580
\end{array}\right)^{\top}
$$

Note that scaling up that last entry means that short vectors in the lattice will likely have 0 in the final column.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination of $2.15,2.75,3.35,3.55,4.20,5.80$ which adds to exactly 15.05 .

The output from LLL:

$$
\left(\begin{array}{rrrrrrrr}
0 & 1 & -2 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & -2 & -1 & 1 & 0 \\
1 & -1 & 1 & 2 & 1 & 1 & 0 & 0 \\
1 & -2 & 0 & 0 & 1 & 1 & 2 & 0 \\
0 & 2 & 0 & -1 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 1 & 1 & -1 & 0 & -5
\end{array}\right)^{\top}
$$

The second vector is the solution.
The 0s in the final entries mean that this is difficult for LLL.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.
The goal is to push Gram-Schmidt length (length of a vector modulo the previous vectors) from early vectors to late vectors.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.
The goal is to push Gram-Schmidt length (length of a vector modulo the previous vectors) from early vectors to late vectors.

A reduced basis is, by definition, one in which G-S length never drops too fast.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.

Classical LLL works by making a succession of two elementary moves:

- Size Reductions Subtract integer multiples of early vectors from late vectors
- Swaps Switch the position of two basis vectors if a minimum amount of G-S length can be pushed.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.
Classical LLL works by making a succession of two elementary moves:

- Size Reductions Subtract integer multiples of early vectors from late vectors
- Swaps Switch the position of two basis vectors if a minimum amount of G-S length can be pushed.
Cost \approx number of swaps \times cost of size-reduction.

Intuitively, how does it work?

The input is a basis $\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}$.
Classical LLL works by making a succession of two elementary moves:

- Size Reductions Subtract integer multiples of early vectors from late vectors
- Swaps Switch the position of two basis vectors if a minimum amount of G-S length can be pushed.
The moves of the algorithm combine to give a unimodular transformation.

A tight example of LLL

$$
\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)
$$

A tight example of LLL

$$
\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)
$$

A tight example of LLL

$$
\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)
$$

A tight example of LLL

A tight example of LLL

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right) \\
& \left(\begin{array}{rrrrr}
10 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

A tight example of LLL

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right) \\
& \left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 \\
10 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

A tight example of LLL

$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 10 & 20 & 0 & 0 \\ 10 & 20 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$	$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$	$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$
$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$	$\left(\begin{array}{rrrr}0 & 0 & 5 & 0 \\ 10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$	$\left(\begin{array}{rrrr}0 & 0 & 5 & 0 \\ 10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
$\left(\begin{array}{rrrr}0 & 0 & 5 & 0 \\ 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 20 & 0 & 0\end{array}\right)$	$\left(\begin{array}{rrrr}0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 1 \\ 10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0\end{array}\right)$	

A tight example of LLL

$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 10 & 20 & 0 & 0 \\ 10 & 20 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)$
$\left(\begin{array}{rrrr}10 & 0 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)\left(\begin{array}{rrrr}0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 \\ 10 & 20 & 5 & 1\end{array}\right)\left(\begin{array}{rrr}10 & 5 & 0 \\ 10 & 0 & 0\end{array}\right)$
$\left(\begin{array}{rrrr}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0\end{array}\right)$

A tight example of LLL

$$
\left.\begin{array}{l}
\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
10 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
0 & 0 & 5 & 0 \\
10 & 20 & 5 & 1
\end{array}\right) \\
\left(\begin{array}{rrrr}
10 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrrr}
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 20 & 0 & 0 \\
10 & 20 & 5 & 1
\end{array}\right)\left(\begin{array}{rrr}
10 & 0 & 0 \\
0 & 0 \\
0 & 20 & 0 \\
0 & 0 & 0 \\
0
\end{array}\right) \\
\left(\begin{array}{rrrr}
0 & 0 & 5 & 0 \\
10 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 20 & 0 & 0
\end{array}\right)\left(\begin{array}{rrrr}
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 1 \\
10 & 0 & 0 & 0 \\
0 & 20 & 0 & 0
\end{array}\right)\left(\begin{array}{rrr}
0 & 0 & 0 \\
0 & 0 & 5 \\
10 & 0 & 0 \\
0 & 20 & 0
\end{array}\right)
\end{array}\right) .
$$

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.

0 switches

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.

1 switch

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.

2 switches

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.
β switches

$$
=\beta+\cdots
$$

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.
$\beta+1$ switches

$$
=\beta+\cdots
$$

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.
$\beta+2$ switches

$$
=\beta+\cdots
$$

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.
$\beta+3$ switches

$$
=\beta+2 \beta+\cdots
$$

Bounding Switches/Swaps and a visualization of LLL

The height of each column is $\log \left(\left\|\mathbf{b}_{i}^{*}\right\|\right) \leq \beta$.
Every iteration/switch increases a G-S norm by a constant factor. LLL[82] uses this to bound the number of swaps: $\mathcal{O}\left(d^{2} \beta\right)$.
$\beta+4$ switches

$$
\begin{aligned}
& =\beta+2 \beta+ \\
& \cdots+(d-1) \beta
\end{aligned}
$$

Visual presentation of classic LLL

G-S norms of generic input basis

This is a picture showing logs of G-S norms.

A reduced basis would have a minimum possible slope (e.g., -1).

Visual presentation of classic LLL

Reduced output \Rightarrow G-S can't drop too fast

This is a picture showing logs of G-S norms.

A reduced basis would have a minimum possible slope (e.g., -1).

Visual presentation of classic LLL

This gives a short vector because:

Reduced output \Rightarrow G-S can't drop too fast

Visual presentation of classic LLL

Reduced output \Rightarrow G-S can't drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than every vector in L

Visual presentation of classic LLL

Reduced output \Rightarrow G-S can't drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than every vector in L

G-S vectors aren't generally in L but $b_{1}^{*}=b_{1}$ is in L

Complexity Bounds for reduction algorithms

Given any matrix $B \in \mathbb{Z}_{d \times d}$ with $\|B\|_{\infty} \leq 2^{\beta}$ whose columns give the lattice basis.

Find $B U$ whose columns are a reduced basis of the same lattice.

- L^{3} costs $\mathcal{P o l y}(d) \cdot \beta^{3}$.
- $\mathrm{L}^{2} / \mathrm{H}$-LLL cost $\operatorname{Poly}(d) \cdot \beta^{2}$.
- \widetilde{L}^{1} moves this to $\mathcal{P o l y}(d) \cdot \beta^{(1+\epsilon)}$

To the new stuff!

Welcome to the second chapter of the talk, the reward for experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions: from reduced to reduced

To the new stuff!

Welcome to the second chapter of the talk, the reward for experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions: from reduced to reduced
2. Introduce recent truncation-friendly version of reduction.

Show the new beautiful tools we made for lift-reduction
Give the new complexities!

To the new stuff!

Welcome to the second chapter of the talk, the reward for experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions: from reduced to reduced
2. Introduce recent truncation-friendly version of reduction.
3. Show the new beautiful tools we made for lift-reduction.

To the new stuff!

Welcome to the second chapter of the talk, the reward for experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions: from reduced to reduced
2. Introduce recent truncation-friendly version of reduction.
3. Show the new beautiful tools we made for lift-reduction.
4. Give the new complexities!

Find reduced, deform, reduce again

Old thinking:

1. Input matrix B, not reduced
2. Begin working on vectors of B
3. Until BU reduced
4. Begin with reduced B
5. Deform it: $\sigma_{\bullet} B$
6. Reduce the deformation: $\sigma_{\ell} B U$ reduced

Find reduced, deform, reduce again

Old thinking:
Indut matrix B, not reduced
2. Begin working on vectors of B
3. Until BU reduced

New thinking:

1. Begin with reduced B
2. Deform it: $\sigma_{\ell} B$
3. Reduce the deformation: $\sigma_{\ell} B U$ reduced

Lift-Reduction

- We call multiplying an entry of each vector by a power of 2 a lift.

Lift-Reduction

- We call multiplying an entry of each vector by a power of 2 a lift.
- As a matrix that is: $\sigma_{\ell}=\left[\begin{array}{llll}2^{\ell} & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$

We'll analyze the impact of this deformation on reduced bases.

- We call Lift-Reduction the act of reducing $\sigma_{\theta} B$ when B was already reduced.

Lift-Reduction

- We call multiplying an entry of each vector by a power of 2 a lift.
- As a matrix that is: $\sigma_{\ell}=\left[\begin{array}{llll}2^{\ell} & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$
- We'll analyze the impact of this deformation on reduced bases.
was already reduced.

Lift-Reduction

- We call multiplying an entry of each vector by a power of 2 a lift.
- As a matrix that is: $\sigma_{\ell}=\left[\begin{array}{llll}2^{\ell} & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$
- We'll analyze the impact of this deformation on reduced bases.
- We call Lift-Reduction the act of reducing $\sigma_{\ell} B$ when B was already reduced.

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced

$$
\left[\begin{array}{l}
\\
\\
51234
\end{array}\right]
$$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced

$$
\left[\begin{array}{cc}
& \\
.321 & .123 \\
0 & 51234
\end{array}\right]
$$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced

$$
\left[\begin{array}{cc}
& \\
321 & 123 \\
0 & 51234
\end{array}\right]
$$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced

$$
\left[\begin{array}{ccc}
.54321 & .21792 & -.15211 \\
0 & 321 & 123 \\
0 & 0 & 51234
\end{array}\right]
$$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced
$\left.\begin{array}{ccc}318 & 10419 & -4156 \\ 1560 & -2184 & 1059 \\ 0 & 0 & 51234\end{array}\right]$

An example: Triangular

Not Reduced

$$
\left[\begin{array}{cccc}
123456 & 60123 & -54127 & 23177 \\
0 & 54321 & 21792 & -15211 \\
0 & 0 & 321 & 123 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

Reduced

$$
\left[\begin{array}{cccc}
.123456 & .060123 & -.054127 & .023177 \\
0 & 318 & 10419 & -4156 \\
0 & 1560 & -2184 & 1059 \\
0 & 0 & 0 & 51234
\end{array}\right]
$$

So what?

Now each lift reduction can be attacked aggressively.
$\left(\begin{array}{rrrr}0 & 0 & 0 & 200001 \\ 1 & 0 & 0 & 90102 \\ 0 & 1 & 0 & 90403 \\ 0 & 0 & 1 & 90904\end{array}\right)^{T}$ (24 swaps)

So what?

Now each lift reduction can be attacked aggressively.

$$
\left(\begin{array}{rrrr}
0 & 0 & 0 & 200001 \\
1 & 0 & 0 & 90102 \\
0 & 1 & 0 & 90403
\end{array}\right)^{T}(24 \text { swaps })
$$

So what?

Now each lift reduction can be attacked aggressively.

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
0 & 0 & 0 & 200001 \\
1 & 0 & 0 & 90102 \\
0 & 1 & 0 & 90403 \\
0 & 0 & 1 & 90904
\end{array}\right)^{T} \text { (24 swaps) } \\
& \left(\begin{array}{rrrr}
0 & 0 & 0 & 200 \\
1 & 0 & 0 & 90 \\
0 & 1 & 0 & 90 \\
0 & 0 & 1 & 90
\end{array}\right)^{T}\left(\begin{array}{rrrr}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
3 & 3 & 3 & 10 \\
-6 & -7 & -7 & 0
\end{array}\right)^{T} \text { (7 swaps) }
\end{aligned}
$$

So what?

Now each lift reduction can be attacked aggressively.

So what?

Now each lift reduction can be attacked aggressively.
$\left(\begin{array}{lllr}0 & 0 & 0 & 200001 \\ 1 & 0 & 0 & 90102 \\ 0 & 1 & 0 & 90403 \\ 0 & 0 & 1 & 90904\end{array}\right)^{T}(24$ swaps $)$
$\left(\begin{array}{rrrr}0 & 0 & 0 & 200 \\ 1 & 0 & 0 & 90 \\ 0 & 1 & 0 & 90 \\ 0 & 0 & 1 & 90\end{array}\right)^{T}\left(\begin{array}{rrrr}-1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 3 & 3 & 3 & 10 \\ -6 & -7 & -7 & 0\end{array}\right)^{T}(7$ swaps $)$
$\left(\begin{array}{llll}-1 & 1 & 0 & 301 \\ -1 & 0 & 1 & 802\end{array}\right)^{T}\left(\begin{array}{rrrr}5 & -8 & 3 & -2 \\ -8 & 13 & -5 & -97\end{array}\right)^{T}(2$ swaps $)$
(First block only)

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any triangular B can be reduced with a series of lift-reductions.

$$
\left[\begin{array}{cc|ccc}
1 & & & & \\
& \ddots & & & \\
\hline & & 2^{\ell_{3}} & & \\
& & & 1 & \\
& & & 1
\end{array}\right]\left[\begin{array}{ccc|ccc}
b_{d, d} & \cdots & \# & \# & \# \\
& \ddots & & & \\
\hline & & \leq 1 & \# & \# \\
& & & \sigma_{\ell_{1}} B^{\prime} U^{\prime}
\end{array}\right]\left[\begin{array}{lll}
I & \\
\hline & U^{\prime \prime}
\end{array}\right]
$$

Lift-reduction: $B \rightarrow \sigma_{\ell} B \rightarrow \sigma_{\ell} B U$

Graphical view of lift-reduction $\log R_{i, i}=\log \left\|b_{i}^{*}\right\|$

Lift-reduction: $B \rightarrow \sigma_{\ell} B \rightarrow \sigma_{\ell} B U$

Graphical view of lift-reduction

$$
\log R_{i, i}^{\prime}
$$

Lift-reduction: $B \rightarrow \sigma_{\ell} B \rightarrow \sigma_{\ell} B U$

Graphical view of lift-reduction

$$
\log R_{i, i}^{\prime \prime}
$$

Truncations and a weakening of reduction

- We must work with truncated entries.

Truncations hurt LLL-reduction (small roundings send a reduced basis to an unreduced basis) A new sense of reduction is truncation friendly but with all of the perks, thanks to [Chang, Stehlé, Villard]

Truncations and a weakening of reduction

- We must work with truncated entries.
- Truncations hurt LLL-reduction (small roundings send a reduced basis to an unreduced basis).

Truncations and a weakening of reduction

- We must work with truncated entries.
- Truncations hurt LLL-reduction (small roundings send a reduced basis to an unreduced basis).
- A new sense of reduction is truncation friendly but with all of the perks, thanks to [Chang, Stehlé, Villard]

Truncations and a weakening of reduction

- We must work with truncated entries.
- Truncations hurt LLL-reduction (small roundings send a reduced basis to an unreduced basis).
- A new sense of reduction is truncation friendly but with all of the perks, thanks to [Chang, Stehlé, Villard]
- I'll denote a truncation of M by $M+\Delta M$
- So now, B 'reduced' $\Rightarrow B+\Delta B$ reduced.

The new reduction, graphically

Benefits of lift reduction

Now l'll show you the (super-cool) tools we introduce for analyzing lift-reductions.

Note that these tools are more general than $\widetilde{\mathrm{L}}^{1}$.

So remember, use lift-reduction whenever you analyze LLL.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{i}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{i}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$
- $\sigma_{\ell}(B+\Delta B) U$ is reduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{i}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$
- $\sigma_{\ell}(B+\Delta B) U$ is reduced.
- $\sigma_{\ell} B(U+\Delta U)$ is reduced.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.

For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{i}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$
- $\sigma_{\ell}(B+\Delta B) U$ is reduced.
- $\sigma_{\ell} B(U+\Delta U)$ is reduced.
- $U+\Delta U$ is unimodular if U was.

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.
For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that

$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{j}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$
- $\sigma_{\ell}(B+\Delta B) U$ is reduced.
- $\sigma_{\ell} B(U+\Delta U)$ is reduced.
- $U+\Delta U$ is unimodular if U was.
- U can be adjusted and stored on $\ell+c \cdot d$-bits per entry

Overview of benefits of lift reduction

Whenever you can find a way to use 'lift reduction' you get all of these tools.
For B reduced, $\sigma_{\ell}:=\operatorname{diag}\left(2^{\ell}, 1, \ldots, 1\right)$, and U any matrix such that
$\sigma_{\ell} B U$ is reduced.

- $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{\left\|b_{j}^{*}\right\|}{\left\|b_{i}^{*}\right\|}$
- $\sigma_{\ell}(B+\Delta B) U$ is reduced.
- $\sigma_{\ell} B(U+\Delta U)$ is reduced.
- $U+\Delta U$ is unimodular if U was.
- U can be adjusted and stored on $\ell+c \cdot d$-bits per entry
- $\operatorname{cond}\left(\sigma_{\ell} B\right) \leq 2^{\ell+\epsilon} \operatorname{cond}(B)$

Bounding lift-reduction U-transformations

For $\sigma_{\ell} B U$ with $B=Q R$ we prove: $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{R_{j, j}}{R_{i, i}}$

Blocks in B:

Bounding lift-reduction U-transformations

For $\sigma_{\ell} B U$ with $B=Q R$ we prove: $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{R_{i, j}}{R_{i, i}}$

Blocks in B :

Bounding lift-reduction U-transformations

For $\sigma_{\ell} B U$ with $B=Q R$ we prove: $\left|U_{i, j}\right| \leq 2^{\ell+c \cdot d} \frac{R_{i, j}}{R_{i, i}}$

Blocks in B:

Block diagonal U:

$$
U=\left[\begin{array}{lll}
U_{1} & U_{2} & U_{3} \\
& U_{4} & U_{5} \\
& & U_{6}
\end{array}\right]
$$

U_{1}, U_{4}, U_{6} small
U_{2}, U_{5} medium U_{3} large

Allows truncations of U

Let B and $\sigma_{\ell} B U$ be reduced.
For any ΔU with $\Delta U_{i, j} / U_{i, j} \leq \epsilon$ (entry-wise perturbations)
We show:

Allows truncations of U

Let B and $\sigma_{\ell} B U$ be reduced.
For any ΔU with $\Delta U_{i, j} / U_{i, j} \leq \epsilon$ (entry-wise perturbations)

Allows truncations of U

Let B and $\sigma_{\ell} B U$ be reduced.
For any ΔU with $\Delta U_{i, j} / U_{i, j} \leq \epsilon$ (entry-wise perturbations)
We show:

$$
\sigma_{\ell} B(U+\Delta U) \text { is also reduced }
$$

Allows truncations of U

Let B and $\sigma_{\ell} B \cup$ be reduced.
For any ΔU with $\Delta U_{i, j} / U_{i, j} \leq \epsilon$ (entry-wise perturbations)
We show:

$$
\sigma_{\ell} B(U+\Delta U) \text { is also reduced }
$$ and:

$$
(U+\Delta U) \text { is unimodular }
$$

Can create efficient U-transformations

$U+\Delta U$ will reduce so we can make an efficient U.

Visual blocks:

Block diagonal U:

$$
U=\left[\begin{array}{lll}
U_{1} & U_{2} & U_{3} \\
& U_{4} & U_{5} \\
& & U_{6}
\end{array}\right]
$$

U_{1}, U_{4}, U_{6} small
U_{2}, U_{5} medium
U_{3} large

Can create efficient U-transformations

$U+\Delta U$ will reduce so we can make an efficient U.

Visual blocks:

$$
U+\Delta U:
$$

$$
\left[\begin{array}{ccc}
\hat{U}_{1} & \hat{U}_{2} \cdot 2^{k_{2}} & \hat{U}_{3} \cdot 2^{k_{3}} \\
& \hat{U}_{4} & \hat{U}_{5} \cdot 2^{k_{2}} \\
& & \hat{U}_{6}
\end{array}\right]
$$

\hat{U}_{i} small

Allows adjustments of B

- By mastering U we can also master B.

When B and $\sigma_{\ell} B U$ are reduced

- Then for ΔB with $\Delta B_{j} / B_{j}$
€ (column-wise perturbations)

Allows adjustments of B

- By mastering U we can also master B.
- When B and $\sigma_{\ell} B U$ are reduced
- Then for $\triangle B$ with $\Delta B_{j} / B_{j} \leq \epsilon$ (column-wise perturbations)
- We show:

Allows adjustments of B

- By mastering U we can also master B.
- When B and $\sigma_{\ell} B U$ are reduced
- Then for ΔB with $\Delta B_{j} / B_{j} \leq \epsilon$ (column-wise perturbations)

Allows adjustments of B

- By mastering U we can also master B.
- When B and $\sigma_{\ell} B U$ are reduced
- Then for ΔB with $\Delta B_{j} / B_{j} \leq \epsilon$ (column-wise perturbations)
- We show:

$$
\sigma_{\ell}(B+\Delta B) U \text { is reduced }
$$

Numerical Stability

- In fplll the precision needed is related to the induced Condition number of B.

Numerical Stability

- In fplll the precision needed is related to the induced Condition number of B.
- For $B=Q R$ let $\operatorname{Cond}(B):=\left\||R| \cdot\left|R^{-1}\right|\right\|$.

Numerical Stability

- In fplll the precision needed is related to the induced Condition number of B.
- For $B=Q R$ let $\operatorname{Cond}(B):=\left\||R| \cdot\left|R^{-1}\right|\right\|$.
- The higher $\operatorname{Cond}(B)$ the more precision fpLlL needs.

Numerical Stability

- In fplll the precision needed is related to the induced Condition number of B.
- For $B=Q R$ let $\operatorname{Cond}(B):=\left\||R| \cdot\left|R^{-1}\right|\right\|$.
- The higher $\operatorname{Cond}(B)$ the more precision fplll needs.
- A reduced B is well-conditioned $\left(\approx 2^{\mathcal{O}(d)}\right)$.

Numerical Stability

- In fplll the precision needed is related to the induced Condition number of B.
- For $B=Q R$ let $\operatorname{Cond}(B):=\left\||R| \cdot\left|R^{-1}\right|\right\|$.
- The higher $\operatorname{Cond}(B)$ the more precision fplll needs.
- A reduced B is well-conditioned $\left(\approx 2^{\mathcal{O}(d)}\right.$).
- We master this when deforming:
$\operatorname{Cond}\left(\sigma_{\ell} B\right)=2^{\ell+c \cdot d} \operatorname{Cond}(B)$

Put the tools to use

Let's try lift-reducing using recursion.

A recursive lifting tree

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

A recursive lifting tree

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

A recursive lifting tree

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

B reduced $\Rightarrow B+\Delta B$ reduced

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

$B+\Delta B$ lifted

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

$B+\Delta B$ lift-reduced

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

small lifts

$$
\sigma_{\ell / 2}(B+\Delta B) U_{1} \text { red. } \Rightarrow \sigma_{\ell / 2} B U_{1} \text { red. }
$$

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

$$
\sigma_{\ell}=\sigma_{\ell / 2}^{2}, \text { now a smaller lift }
$$

Put the tools to use

input: B reduced and lifting target ℓ
goal: U such that $\sigma_{\ell} B U$ is reduced

and so on...

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1} Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

1. leaf: if $\ell \leq d$ then reduce $\sigma_{\ell} B$; return U

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced
2. Lift- \widetilde{L}^{1} on $(B+\Delta B)$, target $\ell / 2$; get U_{1}

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced
2. Lift- \widetilde{L}^{1} on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced
2. Lift- $\widetilde{\mathrm{L}}^{1}$ on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- $\widetilde{\mathrm{L}}^{1}$ on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced
2. Lift- $\widetilde{\mathrm{L}}^{1}$ on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- $\widetilde{\mathrm{L}}^{1}$ on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}
5. return $U_{1} U_{2}$

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

1. leaf: if $\ell \leq d$ then reduce $\sigma_{\ell} B$; return U
2. Lift- \widetilde{L}^{1} on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- \widetilde{L}^{1} on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}
5. return $U_{1} U_{2}$

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

1. leaf: if $\ell \leq d$ then reduce $\sigma_{\ell} B$; return U
2. Lift- $\widetilde{\mathrm{L}}^{1}$ on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- \widetilde{L}^{1} on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}
5. return $U_{1} U_{2}$

Three problems:

Problem 1: Are we reduced enough? (Truncations weaken)

Recursive Lift-reduction

Pseudo-Algorithm: Lift- \widetilde{L}^{1}
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

1. leaf: if $\ell \leq d$ then reduce $\sigma_{\ell} B$; return U
2. Lift- $\tilde{\mathrm{L}}^{1}$ on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- \widetilde{L}^{1} on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}
5. return $U_{1} U_{2}$

Three problems:

Problem 2: Reduce leaf paying ℓ not β

Recursive Lift-reduction

Pseudo-Algorithm: Lift- $\widetilde{\mathrm{L}}^{1}$
Input: B reduced with $\left\|B_{j}\right\| \leq 2^{\beta}$ and target lift ℓ
Output: unimodular U with $\sigma_{\ell} B U$ reduced

1. leaf: if $\ell \leq d$ then reduce $\sigma_{\ell} B$; return U
2. Lift- $\tilde{\mathrm{L}}^{1}$ on $(B+\Delta B)$, target $\ell / 2$; get U_{1}
3. Compute $B_{1}:=\sigma_{\ell / 2} B U_{1}$ weakly reduced
4. Lift- \widetilde{L}^{1} on $\left(B_{1}+\Delta B_{1}\right)$, target $\ell / 2$; return U_{2}
5. return $U_{1} U_{2}$

Three problems:

Problem 3: Perform matrix multiplications paying ℓ not β

New complexities

In these times B is $d \times d$ and $\left\|B_{j}\right\| \leq 2^{\beta}$.
Lift-reduction: given B E-reduced we find U such that $\sigma_{\ell} B U$ is三-reduced in time

$$
\mathcal{O}\left(d^{3+\epsilon}(d+\ell+\tau)+d^{\omega} \mathcal{M}(\ell) \log \ell+\ell \log (\beta+\ell)\right)
$$

Full-reduction: given any B we find U such that $B U$ is
E-reduced in time

$$
\mathcal{O}\left(d^{5+\epsilon} \beta+d^{\omega+1+\epsilon} \beta^{1+\epsilon}\right)
$$

Knapsack-reduction: for a knapsack-type lattice B we use only time

$$
\mathcal{O}\left(d^{5+\epsilon}+d^{4+\epsilon} \beta+d^{\omega} \beta^{1+\epsilon}\right)
$$

Future Directions

Internal to Lattice Reduction:

- Better preconditioning
- Dynamic switch decisions
- Numerically stable steps (maximize practical dimension)
- Parallelize (we all need to)

Future Directions

External to Lattice Reduction:

- Challenge Problems (Homomorphic Crypto Attacks)
- Adaptable to other NP approximations?
- Given a hammer...

Thank You

Thank you for your time!

Problem 1: Strengthen quality

- Morel, Stehlé, and Villard have worked on quickly improving the quality of a reduced basis.

Problem 1: Strengthen quality

- Morel, Stehlé, and Villard have worked on quickly improving the quality of a reduced basis.
- By recognizing blocks of vectors one can carefully truncate the input lattice.

Problem 1: Strengthen quality

- Morel, Stehlé, and Villard have worked on quickly improving the quality of a reduced basis.
- By recognizing blocks of vectors one can carefully truncate the input lattice.

Problem 1: Strengthen quality

- By recognizing blocks of vectors one can carefully truncate the input lattice.

Problem 1: Strengthen quality

- By recognizing blocks of vectors one can carefully truncate the input lattice.

- Results in calling fpLLL on a single lattice with $\beta=\mathcal{O}(d)$

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity. We adapt the Strengthening algorithm to the lift-reduction case. Blocks a deformed by σ but remain somewhat preserved.

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity.
- We adapt the Strengthening algorithm to the lift-reduction case.

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity.
- We adapt the Strengthening algorithm to the lift-reduction case.
- Blocks are deformed by σ_{ℓ} but remain somewhat preserved.

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity.
- We adapt the Strengthening algorithm to the lift-reduction
- Blocks are deformed by σ_{ℓ} but remain somewhat preserved.

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity.
- Blocks are deformed by σ_{ℓ} but remain somewhat preserved.

Problem 2: Leaf paying ℓ not β

- We have to reduce $\sigma_{d} B$ without a β in the complexity.
- Blocks are deformed by σ_{ℓ} but remain somewhat preserved.

- Results in single fpLLL with $\beta=\mathcal{O}(d+\ell)$

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.
- These are performed in every layer of recursion even when ℓ is small.

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.
- We know we can adjust B, so we begin with $B:=\hat{B} E$ where \hat{B} has small entries and $E=\operatorname{diag}\left(2^{e_{1}}, \ldots, 2^{e_{d}}\right)$
small entries.
matrix multiplication with small entries)

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.
- Any U we find can also be adjusted, we choose to take $U=F \hat{U} F^{-1}$ format where $F=\operatorname{diag}\left(2^{f_{1}}, \ldots, 2^{f_{d}}\right)$ and \hat{U} has small entries.

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.
- We know we can adjust B, so we begin with $B:=\hat{B} E$ where \hat{B} has small entries and $E=\operatorname{diag}\left(2^{e_{1}}, \ldots, 2^{e_{d}}\right)$
- Any U we find can also be adjusted, we choose to take $U=F \hat{U} F^{-1}$ format where $F=\operatorname{diag}\left(2^{f_{1}}, \ldots, 2^{f_{d}}\right)$ and \hat{U} has small entries.
- Now these products can be multiplied quickly (standard matrix multiplication with small entries).

Problem 3: Matrix products paying ℓ not β

- We have two types of products: $\sigma_{\ell} B U$ and $U_{1} U_{2}$.
- We know we can adjust B, so we begin with $B:=\hat{B} E$ where \hat{B} has small entries and $E=\operatorname{diag}\left(2^{e_{1}}, \ldots, 2^{e_{d}}\right)$
- Any U we find can also be adjusted, we choose to take $U=F \hat{U} F^{-1}$ format where $F=\operatorname{diag}\left(2^{f_{1}}, \ldots, 2^{f_{d}}\right)$ and \hat{U} has small entries.
- Any weaknesses introduced from our adjustments can be fixed by strengthening (which returns these formats too).

