
L̃1 a quasi-linear LLL algorithm

Andy Novocin
University of Waterloo

joint with
Damien Stehlé and Gilles Villard

FLINT Sage Days (35), December 18, 2011

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

Goals for this talk

• My goal: Be useful to the audience
• Two potential types:

• competent but not LLL experts
• LLL users, maybe experts

• A gift for non-experts: an LLL for your toolbox
(over ambitious?)

• Reward for the others: the novel concepts in L̃1

LLL: A wonderful problem solving tool
To use LLL you must know when it’s possible to use LLL.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

LLL: A wonderful problem solving tool

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Subset-sum, Knapsack, variants, etc.

Find a combination of 2.15,2.75,3.35,3.55,4.20,5.80 which
adds to exactly 15.05. (1 Mixed fruit, 2 orders of hot wings, and
a sampler plate)

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Minimal Polynomials

Given α ≈ −.78447320− 1.96117174 ·
√
−1

find minpoly(α). (x3 + 2x − 7)

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Algebraic number manipulation

Is there a combination of β1, β2, β3 ∈ Q(α) whose 23-adic
image is 21 + 7 · 23 + 11 · 232 + · · · ?

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Diophantine Approximation

Given r1, . . . , rn ∈ R find rationals which approximate them each
with the same small denominator.

LLL: A wonderful problem solving tool
What type of problem can LLL attack?

When you need to find an integer combination of
{some stuff} which will satisfy some property.

Example Applications:

Euclidean Algorithm

Given a,b find gcd(a,b) = s · a + t · b.

Obligatory lattice intro

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xib i : xi ∈ Z}

If the b i ’s are linearly independent,
they are called a basis .

Bases are not unique, but they can be
obtained from each other by integer
transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.

Obligatory lattice intro

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xib i : xi ∈ Z}

If the b i ’s are linearly independent,
they are called a basis .

Bases are not unique, but they can be
obtained from each other by integer
transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.

Obligatory lattice intro

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xib i : xi ∈ Z}

If the b i ’s are linearly independent,
they are called a basis .

Bases are not unique, but they can be
obtained from each other by integer
transforms of determinant ±1:
[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.

What LLL actually does.

A lattice reduction algorithm is given
some basis and attempts to find a better
basis.

What LLL actually does.

A lattice reduction algorithm is given
some basis and attempts to find a better
basis.

The output is a reduced basis, which is
somewhat orthogonal.

What LLL actually does.

A lattice reduction algorithm is given
some basis and attempts to find a better
basis.

The output is a reduced basis, which is
somewhat orthogonal.

In 1982 Lenstra, Lenstra, Lovász gave
a polynomial time reduction algorithm
(LLL).

What LLL actually does.

One Popular Lattice Question:

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

Is NP-hard to find.

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

Is NP-hard to find.

LLL approximately solves SVP in
polynomial-time!

What LLL actually does.

One Popular Lattice Question:

Shortest non-zero vector (SVP)

Is NP-hard to find.

LLL approximately solves SVP in
polynomial-time!

When lucky and creative , approximate
can be enough.

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

Make a lattice using α0, α1, α2, α3:

1 0 0 0 10000000000 0
0 1 0 0 −7844732000 −19611717400
0 0 1 0 −32307963923 30769733412
0 0 0 1 85689463459 39223434588

T

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

Make a lattice using α0, α1, α2, α3:

1 0 0 0 10000000000 0
0 1 0 0 −7844732000 −19611717400
0 0 1 0 −32307963923 30769733412
0 0 0 1 85689463459 39223434588

T

Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

Make a lattice using α0, α1, α2, α3:

1 0 0 0 10000000000 0
0 1 0 0 −7844732000 −19611717400
0 0 1 0 −32307963923 30769733412
0 0 0 1 85689463459 39223434588

T

Let minpoly(α) =: c0 + c1x + c2x2 + c3x3.
Then (c0, c1, c2, c3, ǫ, ǫ) ∈ L and is smaller in size than the other
vectors.

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

The first 2 vectors found by LLL are:

(
−7 2 0 1 −541 −212

84502 −313827 −101869 −77000 −106913 266772

)T

Examples of combination problems → lattice problems

Given an approximation α ≈ −.78447320+ 1.96117174 ·
√
−1.

Find a minimal polynomial for α.

The first 2 vectors found by LLL are:

(
−7 2 0 1 −541 −212

84502 −313827 −101869 −77000 −106913 266772

)T

We read this as saying that α is a root of x3 + 2x − 7.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75,3.35,3.55,4.20,5.80 which adds to exactly 15.05.

The lattice I created for this one:

1 0 0 0 0 0 0 −1505
0 1 0 0 0 0 0 215
0 0 1 0 0 0 0 275
0 0 0 1 0 0 0 335
0 0 0 0 1 0 0 355
0 0 0 0 0 1 0 420
0 0 0 0 0 0 1 580

T

Note that scaling up that last entry means that short
vectors in the lattice will likely have 0 in the final column.

Another example of LLL solving a problem

For the knapsack menu problem we had to find a combination
of 2.15,2.75,3.35,3.55,4.20,5.80 which adds to exactly 15.05.

The output from LLL:

0 1 −2 1 0 0 0 0
1 1 0 0 2 0 1 0
0 1 0 1 −2 −1 1 0
1 −1 1 2 1 1 0 0
1 −2 0 0 1 1 2 0
0 2 0 −1 −1 2 −1 0
0 0 −1 1 1 −1 0 −5

T

The second vector is the solution.
The 0s in the final entries mean that this is difficult for LLL.

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

The goal is to push Gram-Schmidt length (length of a vector
modulo the previous vectors) from early vectors to late vectors.

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

The goal is to push Gram-Schmidt length (length of a vector
modulo the previous vectors) from early vectors to late vectors.

A reduced basis is, by definition, one in which G-S length never
drops too fast.

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

Classical LLL works by making a succession of two elementary
moves:

• Size Reductions Subtract integer multiples of early
vectors from late vectors

• Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

Classical LLL works by making a succession of two elementary
moves:

• Size Reductions Subtract integer multiples of early
vectors from late vectors

• Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

Cost ≈ number of swaps × cost of size-reduction.

Intuitively, how does it work?

The input is a basis b1, . . . ,bd .

Classical LLL works by making a succession of two elementary
moves:

• Size Reductions Subtract integer multiples of early
vectors from late vectors

• Swaps Switch the position of two basis vectors if a
minimum amount of G-S length can be pushed.

The moves of the algorithm combine to give a unimodular
transformation.

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

A tight example of LLL

10 0 0 0
10 20 0 0
10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0

10 20 5 0
10 20 5 1

10 0 0 0
0 20 0 0
0 0 5 0

10 20 5 1

10 0 0 0
0 0 5 0
0 20 0 0

10 20 5 1

0 0 5 0
10 0 0 0

0 20 0 0
10 20 5 1

0 0 5 0
10 0 0 0
0 20 0 0
0 0 0 1

0 0 5 0
10 0 0 0

0 0 0 1
0 20 0 0

0 0 5 0
0 0 0 1

10 0 0 0
0 20 0 0

0 0 0 1
0 0 5 0

10 0 0 0
0 20 0 0

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m
m

m
m
m
ppp
m
m

m
m
m
ppp
m
mp p p

0 switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m
m

m
m
m
ppp
m

m
m
m
ppp
m
mp p p

m

1 switch

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m
m

m
m

m
ppp

m
m
m
ppp
m
mp p p

m
m

2 switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

= β + · · ·

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m
m

m
m
m
ppp
m
mp p p

m
m
m
ppp
m
m

β switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

= β + · · ·

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m

m
m
m
ppp
m
m

p p p

mm
m
m
ppp
m
m

β + 1 switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

= β + · · ·

β

︸ ︷︷ ︸
d−1

p p p m
m
m
ppp
m

m
m
m
ppp
m
m

p p p

m
m
m
ppp
m
m
mβ + 2 switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

= β + 2β + · · ·

β

︸ ︷︷ ︸
d−1

p p pm
m
m
ppp
m
m

p p p

m
m
m
ppp
m
m
m

m
m

m
ppp

m

β + 3 switches

Bounding Switches/Swaps and a visualization of LLL
The height of each column is log(‖ b∗

i ‖) ≤ β.

Every iteration/switch increases a G-S norm by a constant factor.

LLL[82] uses this to bound the number of swaps: O(d2β).

= β + 2β+

· · · + (d − 1)β
β

︸ ︷︷ ︸
d−1

p p pm
m
m
ppp
m
m

p p p

m
m
m
ppp
m
m
m

m
m

m
ppp

m
β + 4 switches

Visual presentation of classic LLL

log ‖ b∗i ‖

i

6

-
G-S norms of generic input

basis

This is a picture showing logs
of G-S norms.

A reduced basis would have a
minimum possible slope (e.g., -1).

Visual presentation of classic LLL

log ‖ b∗i ‖

i

6

-
```̀

HHH

Reduced output ⇒
G-S can’t drop too fast

This is a picture showing logs
of G-S norms.

A reduced basis would have a
minimum possible slope (e.g., -1).



Visual presentation of classic LLL

log ‖ b∗i ‖

i

6

-
```̀

HHH
m

Reduced output ⇒
G-S can’t drop too fast

This gives a short vector because:

Visual presentation of classic LLL

log ‖ b∗i ‖

i

6

-
```̀

HHH
m

m

Reduced output ⇒
G-S can’t drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than
every vector in L



Visual presentation of classic LLL

log ‖ b∗i ‖

i

6

-
```̀

HHH
m

m

Reduced output ⇒
G-S can’t drop too fast

This gives a short vector because:

Smallest G-S vector is smaller than
every vector in L

G-S vectors aren’t generally in L but
b∗

1 = b1 is in L

Complexity Bounds for reduction algorithms

Given any matrix B ∈ Zd×d with ‖ B ‖∞≤ 2β whose columns
give the lattice basis.

Find BU whose columns are a reduced basis of the same
lattice.

• L3 costs Poly(d) · β3.

• L2/H-LLL cost Poly(d) · β2.

• L̃1moves this to Poly(d) · β(1+ǫ)

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

3. Show the new beautiful tools we made for lift-reduction.

4. Give the new complexities!

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

3. Show the new beautiful tools we made for lift-reduction.

4. Give the new complexities!

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

3. Show the new beautiful tools we made for lift-reduction.

4. Give the new complexities!

To the new stuff!

Welcome to the second chapter of the talk, the reward for
experts.
A road-map of this section:

1. Present LLL as a sequence of lift-reductions:
from reduced to reduced

2. Introduce recent truncation-friendly version of reduction.

3. Show the new beautiful tools we made for lift-reduction.

4. Give the new complexities!

Find reduced, deform, reduce again

Old thinking:

1. Input matrix B, not reduced

2. Begin working on vectors of B

3. Until BU reduced

New thinking:

1. Begin with reduced B

2. Deform it: σℓB

3. Reduce the deformation: σℓBU reduced

Find reduced, deform, reduce again

Old thinking:

1. Input matrix B, not reduced

2. Begin working on vectors of B

3. Until BU reduced

New thinking:

1. Begin with reduced B

2. Deform it: σℓB

3. Reduce the deformation: σℓBU reduced

Lift-Reduction

• We call multiplying an entry of each vector by a power of 2
a lift .

• As a matrix that is: σℓ =

2ℓ

1
. . .

1

• We’ll analyze the impact of this deformation on reduced
bases.

• We call Lift-Reduction the act of reducing σℓB when B
was already reduced.

Lift-Reduction

• We call multiplying an entry of each vector by a power of 2
a lift .

• As a matrix that is: σℓ =

2ℓ

1
. . .

1

• We’ll analyze the impact of this deformation on reduced
bases.

• We call Lift-Reduction the act of reducing σℓB when B
was already reduced.

Lift-Reduction

• We call multiplying an entry of each vector by a power of 2
a lift .

• As a matrix that is: σℓ =

2ℓ

1
. . .

1

• We’ll analyze the impact of this deformation on reduced
bases.

• We call Lift-Reduction the act of reducing σℓB when B
was already reduced.

Lift-Reduction

• We call multiplying an entry of each vector by a power of 2
a lift .

• As a matrix that is: σℓ =

2ℓ

1
. . .

1

• We’ll analyze the impact of this deformation on reduced
bases.

• We call Lift-Reduction the act of reducing σℓB when B
was already reduced.

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced

51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced
 .321 .123

0 51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced
 321 123

0 51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced

.54321 .21792 −.15211
0 321 123
0 0 51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced

318 10419 −4156
1560 −2184 1059

0 0 51234

An example: Triangular

Not Reduced

123456 60123 −54127 23177
0 54321 21792 −15211
0 0 321 123
0 0 0 51234

Reduced

.123456 .060123 −.054127 .023177
0 318 10419 −4156
0 1560 −2184 1059
0 0 0 51234

So what?

Now each lift reduction can be attacked aggressively.

0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

T

(24 swaps)

0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90

T

−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

T

(7 swaps)

(
−1 1 0 301
−1 0 1 802

)T(
5 −8 3 −2

−8 13 −5 −97

)T

(2 swaps)

(First block only)

So what?

Now each lift reduction can be attacked aggressively.

0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

T

(24 swaps)

0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90

T

−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

T

(7 swaps)

(
−1 1 0 301
−1 0 1 802

)T(
5 −8 3 −2

−8 13 −5 −97

)T

(2 swaps)

(First block only)

So what?

Now each lift reduction can be attacked aggressively.

0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

T

(24 swaps)

0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90

T

−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

T

(7 swaps)

(
−1 1 0 301
−1 0 1 802

)T(
5 −8 3 −2

−8 13 −5 −97

)T

(2 swaps)

(First block only)

So what?

Now each lift reduction can be attacked aggressively.

0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

T

(24 swaps)

0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90

T

−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

T

(7 swaps)

(
−1 1 0 301
−1 0 1 802

)T(
5 −8 3 −2

−8 13 −5 −97

)T

(2 swaps)

(First block only)

So what?

Now each lift reduction can be attacked aggressively.

0 0 0 200001
1 0 0 90102
0 1 0 90403
0 0 1 90904

T

(24 swaps)

0 0 0 200
1 0 0 90
0 1 0 90
0 0 1 90

T

−1 1 0 0
−1 0 1 0

3 3 3 10
−6 −7 −7 0

T

(7 swaps)

(
−1 1 0 301
−1 0 1 802

)T(
5 −8 3 −2

−8 13 −5 −97

)T

(2 swaps)

(First block only)

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

1
. . .

1
1

1

bd ,d . . . # # #
. . .

b3,3 # #
b2,2 #

b1,1

[
I

I

]

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

1
. . .

1
2ℓ2

1

bd ,d . . . # # #
. . .

b3,3 # #

≤ 1 #
b1,1

[
I

U ′

]

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

1
. . .

1
1

1

bd ,d . . . # # #
. . .

b3,3 # #

σℓ1B′U ′

[
I

I

]

General reduction as a sequence of lift-reduction

Any non-singular B can be triangularized via HNF.

Any triangular B can be reduced with a series of lift-reductions.

1
. . .

2ℓ3

1
1

bd ,d . . . # # #
. . .

≤ 1 # #
σℓ1B

′U ′

[
I

U ′′

]

Lift-reduction: B → σℓB → σℓBU

Graphical view of lift-reduction
log Ri ,i = log ‖ b∗

i ‖

6

-

HHHHHH

XXXXXX

ZZ

ZZ
ZZ

Z
ZZ

Z
Z
ZZ

B = QR

Lift-reduction: B → σℓB → σℓBU

Graphical view of lift-reduction
log R′

i ,i

6

-

HHH6

HHH

XX
6XXXX

ZZ
6

ZZ
6ZZ

Z
ZZ

Z
Z
ZZ

σℓB = Q′R′

Lift-reduction: B → σℓB → σℓBU

Graphical view of lift-reduction
log R′′

i ,i

6

-

XXXXX

PPPPPPPP

`````̀

σℓBU = Q′′R′′



Truncations and a weakening of reduction

• We must work with truncated entries.

• Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

• A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

• I’ll denote a truncation of M by M +∆M

• So now, B ‘reduced’ ⇒ B +∆B reduced.



Truncations and a weakening of reduction

• We must work with truncated entries.

• Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

• A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

• I’ll denote a truncation of M by M +∆M

• So now, B ‘reduced’ ⇒ B +∆B reduced.



Truncations and a weakening of reduction

• We must work with truncated entries.

• Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

• A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

• I’ll denote a truncation of M by M +∆M

• So now, B ‘reduced’ ⇒ B +∆B reduced.



Truncations and a weakening of reduction

• We must work with truncated entries.

• Truncations hurt LLL-reduction (small roundings send a
reduced basis to an unreduced basis).

• A new sense of reduction is truncation friendly
but with all of the perks, thanks to [Chang, Stehlé, Villard]

• I’ll denote a truncation of M by M +∆M

• So now, B ‘reduced’ ⇒ B +∆B reduced.



The new reduction, graphically

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

0
b1

b2

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

0
b1

b2

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

0
b1

b2

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

0
b1

b2

(1,1/2,0) (δ,1/2,0) (δ, η,0) (δ, η, θ)

Hermite LLL’82 Schnorr’88 [C-S-V’10]



Benefits of lift reduction

Now I’ll show you the (super-cool) tools we introduce for
analyzing lift-reductions.

Note that these tools are more general than L̃1.

So remember, use lift-reduction whenever you analyze LLL.



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Overview of benefits of lift reduction

Whenever you can find a way to use ‘lift reduction’ you get all of
these tools.

For B reduced, σℓ := diag(2ℓ,1, . . . ,1), and U any matrix such
that

σℓBU is reduced.

• |Ui ,j | ≤ 2ℓ+c·d ‖b∗
j ‖

‖b∗
i ‖

• σℓ(B +∆B)U is reduced.

• σℓB(U +∆U) is reduced.

• U +∆U is unimodular if U was.

• U can be adjusted and stored on ℓ+ c · d -bits per entry

• cond(σℓB) ≤ 2ℓ+ǫcond(B)



Bounding lift-reduction U-transformations

For σℓBU with B = QR we prove: |Ui ,j | ≤ 2ℓ+c·d Rj,j
Ri,i

Blocks in B:

6

-

XXX

PPPPPP

```̀

Block diagonal U:

U =

U1 U2 U3

U4 U5

U6

U1,U4,U6 small
U2,U5 medium
U3 large

Bounding lift-reduction U-transformations

For σℓBU with B = QR we prove: |Ui ,j | ≤ 2ℓ+c·d Rj,j
Ri,i

Blocks in B:

6

-

XXX

PPPPPP

```̀

Block diagonal U:

U =




U1 U2 U3

U4 U5

U6




U1,U4,U6 small
U2,U5 medium
U3 large



Bounding lift-reduction U-transformations

For σℓBU with B = QR we prove: |Ui ,j | ≤ 2ℓ+c·d Rj,j
Ri,i

Blocks in B:

6

-

XXX

PPPPPP

```̀

Block diagonal U:

U =

U1 U2 U3

U4 U5

U6

U1,U4,U6 small
U2,U5 medium
U3 large

Allows truncations of U

Let B and σℓBU be reduced.

For any ∆U with ∆Ui ,j/Ui ,j ≤ ǫ (entry-wise perturbations)

We show:

σℓB(U +∆U) is also reduced

and:
(U +∆U) is unimodular

Allows truncations of U

Let B and σℓBU be reduced.

For any ∆U with ∆Ui ,j/Ui ,j ≤ ǫ (entry-wise perturbations)

We show:

σℓB(U +∆U) is also reduced

and:
(U +∆U) is unimodular

Allows truncations of U

Let B and σℓBU be reduced.

For any ∆U with ∆Ui ,j/Ui ,j ≤ ǫ (entry-wise perturbations)

We show:

σℓB(U +∆U) is also reduced

and:
(U +∆U) is unimodular

Allows truncations of U

Let B and σℓBU be reduced.

For any ∆U with ∆Ui ,j/Ui ,j ≤ ǫ (entry-wise perturbations)

We show:

σℓB(U +∆U) is also reduced

and:
(U +∆U) is unimodular

Can create efficient U-transformations

U +∆U will reduce so we can make an efficient U.

Visual blocks:

6

-

XXX

PPPPPP

```̀

Block diagonal U:

U =




U1 U2 U3

U4 U5

U6




U1,U4,U6 small
U2,U5 medium
U3 large



Can create efficient U-transformations

U +∆U will reduce so we can make an efficient U.

Visual blocks:

6

-

XXX

PPPPPP

```̀
U +∆U:

Û1 Û2 · 2k2 Û3 · 2k3

Û4 Û5 · 2k2

Û6

Ûi small

Allows adjustments of B

• By mastering U we can also master B.

• When B and σℓBU are reduced

• Then for ∆B with ∆Bj/Bj ≤ ǫ (column-wise perturbations)

• We show:

σℓ(B +∆B)U is reduced

Allows adjustments of B

• By mastering U we can also master B.

• When B and σℓBU are reduced

• Then for ∆B with ∆Bj/Bj ≤ ǫ (column-wise perturbations)

• We show:

σℓ(B +∆B)U is reduced

Allows adjustments of B

• By mastering U we can also master B.

• When B and σℓBU are reduced

• Then for ∆B with ∆Bj/Bj ≤ ǫ (column-wise perturbations)

• We show:

σℓ(B +∆B)U is reduced

Allows adjustments of B

• By mastering U we can also master B.

• When B and σℓBU are reduced

• Then for ∆B with ∆Bj/Bj ≤ ǫ (column-wise perturbations)

• We show:

σℓ(B +∆B)U is reduced

Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)

Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)

Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)

Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)

Numerical Stability

• In fpLLL the precision needed is related to the induced
Condition number of B.

• For B = QR let Cond(B) :=‖ |R| · |R−1| ‖.

• The higher Cond(B) the more precision fpLLL needs.

• A reduced B is well-conditioned (≈ 2O(d)).

• We master this when deforming:
Cond(σℓB) = 2ℓ+c·dCond(B)

Put the tools to use

Let’s try lift-reducing
using recursion.

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

@
@@

�
��

@@�� @@�� @@�� @@��

A recursive lifting tree

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

B

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

A recursive lifting tree

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓB

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

A recursive lifting tree

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓB
�

�
��	

⌊B⌋

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

B reduced ⇒ B +∆B reduced

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓB
�

�
��	

σℓ/2⌊B⌋

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

B +∆B lifted

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓB
�

�
��	

σℓ/2⌊B⌋U1

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

B +∆B lift-reduced

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓ/2⌊B⌋U1

�
�
���

σℓBU1

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

σℓ/2(B +∆B)U1 red. ⇒ σℓ/2BU1 red.

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓ/2⌊B⌋U1

�
�
���

σℓ/2(σℓ/2BU1)

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

σℓ = σ2
ℓ/2, now a smaller lift

Put the tools to use

input: B reduced and
lifting target ℓ

goal: U such that σℓBU
is reduced

large lifts

?

6

small lifts

@
@
@
@@

�
�

�
��
@
@@

�
��

σℓ/2⌊B⌋U1

�
�
���

σℓ/2(σℓ/2BU1)

@
@
@R

⌊σℓ/2BU1⌋

nodes send σ∗reduced → reduced

@
@@

�
��

@@�� @@�� @@�� @@��

and so on . . .

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:
Problem 1: Are we reduced enough? (Truncations weaken)

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:
Problem 2: Reduce leaf paying ℓ not β

Recursive Lift-reduction

Pseudo-Algorithm: Lift-L̃1

Input: B reduced with ‖ Bj ‖≤ 2β and target lift ℓ
Output: unimodular U with σℓBU reduced

1. leaf: if ℓ ≤ d then reduce σℓB; return U

2. Lift-L̃1 on (B +∆B), target ℓ/2; get U1

3. Compute B1 := σℓ/2BU1 weakly reduced

4. Lift-L̃1 on (B1 +∆B1), target ℓ/2; return U2

5. return U1U2

Three problems:
Problem 3: Perform matrix multiplications paying ℓ not β

New complexities

In these times B is d × d and ‖ Bj ‖≤ 2β.
Lift-reduction: given B Ξ-reduced we find U such that σℓBU is
Ξ-reduced in time

O
(

d3+ǫ(d + ℓ+ τ) + dωM(ℓ) log ℓ+ ℓ log(β + ℓ)
)

Full-reduction: given any B we find U such that BU is
Ξ-reduced in time

O(d5+ǫβ + dω+1+ǫβ1+ǫ)

Knapsack-reduction: for a knapsack-type lattice B we use
only time

O(d5+ǫ + d4+ǫβ + dωβ1+ǫ)

Future Directions

Internal to Lattice Reduction:

• Better preconditioning

• Dynamic switch decisions

• Numerically stable steps (maximize practical dimension)

• Parallelize (we all need to)

Future Directions

External to Lattice Reduction:

• Challenge Problems (Homomorphic Crypto Attacks)

• Adaptable to other NP approximations?

• Given a hammer. . .

Thank You

Thank you for your time!

Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

• Results in calling fpLLL on a single lattice with β = O(d)

Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

• Results in calling fpLLL on a single lattice with β = O(d)

Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

6

-

XXX

PPPPPP

```̀

• Results in calling fpLLL on a single lattice with β = O(d)



Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

6

-

XXX

PPPPPP

```̀

• Results in calling fpLLL on a single lattice with β = O(d)

Problem 1: Strengthen quality

• Morel, Stehlé, and Villard have worked on quickly
improving the quality of a reduced basis.

• By recognizing blocks of vectors one can carefully truncate
the input lattice.

6

-

XXX

PPPPPP

```̀

• Results in calling fpLLL on a single lattice with β = O(d)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

• Results in single fpLLL with β = O(d + ℓ)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

• Results in single fpLLL with β = O(d + ℓ)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

• Results in single fpLLL with β = O(d + ℓ)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

6

-

XX
XX

PPPP
PP

`̀
``̀

• Results in single fpLLL with β = O(d + ℓ)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

6

-

XX
XX

PPPP
PP

`̀
``̀

• Results in single fpLLL with β = O(d + ℓ)



Problem 2: Leaf paying ℓ not β
• We have to reduce σd B without a β in the complexity.

• We adapt the Strengthening algorithm to the lift-reduction
case.

• Blocks are deformed by σℓ but remain somewhat
preserved.

6

-

XX
XX

PPPP
PP

`̀
``̀

• Results in single fpLLL with β = O(d + ℓ)



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).



Problem 3: Matrix products paying ℓ not β

• We have two types of products: σℓBU and U1U2.

• These are performed in every layer of recursion even when
ℓ is small.

• We know we can adjust B, so we begin with B := B̂E
where B̂ has small entries and E = diag(2e1 , . . . ,2ed )

• Any U we find can also be adjusted, we choose to take
U = FÛF−1 format where F = diag(2f1 , . . . ,2fd ) and Û has
small entries.

• Now these products can be multiplied quickly (standard
matrix multiplication with small entries).

• Any weaknesses introduced from our adjustments can be
fixed by strengthening (which returns these formats too).


