A brief introduction to

Chebfun

By Nick Hale

University of Oxford hale@maths.ox.ac.uk

Philosophy:
Numerical computing with functions.

Philosophy:

Numerical computing with functions.
"Computing with symbolic feel and numerical speed"

Symbolic Computing (Maple, Mathematica, etc.)

Manipulate formulas exactly.
When you want numbers, evaluate the formulas.
PROBLEM: Most problems cannot be solved symbolically.
Even when they can, symbolic expressions tend to grow exponentially.

Symbolic Computing (

SymPy
Manipulate formulas exactly.
When you want numbers, evaluate the formulas.
PROBLEM: Most problems cannot be solved symbolically
Even when they can, symbolic expressions tend to grow exponentially.

Symbolic Computing (

 SymPyManipulate formulas exactly. When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically. Even when they can, symbolic expressions tend to grow exponentially.

For example, what's the integral of $\exp (-x) \cos (6 x)^{5} \sin (5 x)^{6}$ from -1 to 1 ?

For example, what's the integral of $\exp (-x) \cos (6 x)^{5} \sin (5 x)^{6}$ from -1 to 1 ?

Maple or Mathematica can figure out the answer symbolically:

$$
\begin{aligned}
\frac{6}{37} & \mathrm{e}^{-1} \sin (1) \cos (1)^{5}-\frac{324}{629} \mathrm{e}^{-1} \sin (1) \cos (1)^{3}-\frac{45}{512} \mathrm{e} \cos (2)+\frac{63}{2368} \mathrm{e} \sin (6)+\frac{15}{25856} \mathrm{e} \sin (10)+\frac{21}{8704} \mathrm{e} \cos (4)+\frac{75}{640256} \mathrm{e} \sin (50)+\frac{105}{25216} \\
& \mathrm{e} \sin (14)+\frac{15}{50432} \mathrm{e} \cos (14)+\frac{21}{4736} \mathrm{e} \cos (6)-\frac{3}{7424} \mathrm{e} \sin (12)-\frac{15}{1664} \mathrm{e} \sin (8)+\frac{75}{115328} \mathrm{e} \sin (30)-\frac{45}{256} \mathrm{e} \sin (2)+\frac{366}{629} \mathrm{e}^{-1} \sin (1) \cos (1) \\
& +\frac{6}{37} \mathrm{e} \sin (1) \cos (1)^{5}-\frac{15}{410624} \mathrm{e} \cos (20)-\frac{75}{102656} \mathrm{e} \sin (20)+\frac{57}{73984} \mathrm{e} \sin (38)+\frac{3}{147968} \mathrm{e} \cos (38)+\frac{68661}{644096} \mathrm{e}^{-1}-\frac{45}{166016} \mathrm{e} \sin (36)+\frac{1}{37} \\
& \mathrm{e} \cos (1)^{6}+\frac{21}{2176} \mathrm{e} \sin (4)-\frac{1}{29696} \mathrm{e} \cos (12)-\frac{105}{40192} \mathrm{e} \sin (28)-\frac{81}{629} \mathrm{e} \cos (1)^{4}+\frac{9}{1664} \mathrm{e} \sin (18)+\frac{1}{3328} \mathrm{e} \cos (18)-\frac{75}{204928} \mathrm{e} \sin (40) \\
& -\frac{15}{1639424} \mathrm{e} \cos (40)-\frac{3}{29504} \mathrm{e} \sin (48)-\frac{75}{8224} \mathrm{e} \sin (16)-\frac{5}{664064} \mathrm{e} \cos (36)+\frac{3}{51712} \mathrm{e} \cos (10)-\frac{15}{160768} \mathrm{e} \cos (28)+\frac{5}{230656} \mathrm{e} \cos (30) \\
& -\frac{15}{13312} \mathrm{e} \cos (8)+\frac{183}{629} \mathrm{e} \cos (1)^{2}-\frac{75}{131584} \mathrm{e} \cos (16)+\frac{3}{1280512} \mathrm{e} \cos (50)-\frac{1}{472064} \mathrm{e} \cos (48)-\frac{1}{3687424} \mathrm{e} \cos (60)-\frac{15}{921856} \mathrm{e} \sin (60) \\
& +\frac{195}{86656} \mathrm{e} \sin (26)+\frac{15}{173312} \mathrm{e} \cos (26)-\frac{3}{51712} \mathrm{e}^{-1} \cos (10)+\frac{15}{160768} \mathrm{e}^{-1} \cos (28)-\frac{5}{230656} \mathrm{e}^{-1} \cos (30)+\frac{15}{13312} \mathrm{e}^{-1} \cos (8)-\frac{183}{629} \mathrm{e}^{-1} \cos (1)^{2} \\
& +\frac{75}{131584} \mathrm{e}^{-1} \cos (16)-\frac{3}{1280512} \mathrm{e}^{-1} \cos (50)+\frac{1}{472064} \mathrm{e}^{-1} \cos (48)+\frac{1}{3687424} \mathrm{e}^{-1} \cos (60)-\frac{15}{921856} \mathrm{e}^{-1} \sin (60)+\frac{195}{86656} \mathrm{e}^{-1} \sin (26) \\
& -\frac{15}{173312} \mathrm{e}^{-1} \cos (26)-\frac{324}{629} \mathrm{e} \sin (1) \cos (1)^{3}+\frac{63}{2368} \mathrm{e}^{-1} \sin (6)+\frac{15}{25856} \mathrm{e}^{-1} \sin (10)-\frac{21}{8704} \mathrm{e}^{-1} \cos (4)-\frac{68661}{644096} \mathrm{e}-\frac{15}{36928} \mathrm{e} \sin (24) \\
& -\frac{5}{295424} \mathrm{e} \cos (24)+\frac{366}{629} \mathrm{e} \sin (1) \cos (1)+\frac{45}{512} \mathrm{e}^{-1} \cos (2)+\frac{75}{640256} \mathrm{e}^{-1} \sin (50)+\frac{105}{25216} \mathrm{e}^{-1} \sin (14)-\frac{15}{50432} \mathrm{e}^{-1} \cos (14)-\frac{21}{4736} \mathrm{e}^{-1} \cos (6) \\
& -\frac{3}{7424} \mathrm{e}^{-1} \sin (12)-\frac{15}{1664} \mathrm{e}^{-1} \sin (8)+\frac{75}{115328} \mathrm{e}^{-1} \sin (30)-\frac{45}{256} \mathrm{e}^{-1} \sin (2)-\frac{15}{36928} \mathrm{e}^{-1} \sin (24)+\frac{5}{295424} \mathrm{e}^{-1} \cos (24)+\frac{15}{410624} \mathrm{e}^{-1} \cos (20) \\
& -\frac{75}{102656} \mathrm{e}^{-1} \sin (20)+\frac{57}{73984} \mathrm{e}^{-1} \sin (38)-\frac{3}{147968} \mathrm{e}^{-1} \cos (38)-\frac{45}{166016} \mathrm{e}^{-1} \sin (36)-\frac{1}{37} \mathrm{e}^{-1} \cos (1)^{6}+\frac{21}{2176} \mathrm{e}^{-1} \sin (4)+\frac{1}{29696} \mathrm{e}^{-1} \cos (12) \\
& -\frac{105}{40192} \mathrm{e}^{-1} \sin (28)+\frac{81}{629} \mathrm{e}^{-1} \cos (1)^{4}+\frac{9}{1664} \mathrm{e}^{-1} \sin (18)-\frac{1}{3328} \mathrm{e}^{-1} \cos (18)-\frac{75}{204928} \mathrm{e}^{-1} \sin (40)+\frac{15}{1639424} \mathrm{e}^{-1} \cos (40)
\end{aligned}
$$

For example, what's the integral of $\exp (-x) \cos (6 x)^{5} \sin (5 x)^{6}$ from -1 to 1 ?

Maple or Mathematica can figure out the answer symbolically:

$$
\begin{aligned}
\frac{6}{37} & \mathrm{e}^{-1} \sin (1) \cos (1)^{5}-\frac{324}{629} \mathrm{e}^{-1} \sin (1) \cos (1)^{3}-\frac{45}{512} \mathrm{e} \cos (2)+\frac{63}{2368} \mathrm{e} \sin (6)+\frac{15}{25856} \mathrm{e} \sin (10)+\frac{21}{8704} \mathrm{e} \cos (4)+\frac{75}{640256} \mathrm{e} \sin (50)+\frac{105}{25216} \\
& \mathrm{e} \sin (14)+\frac{15}{50432} \mathrm{e} \cos (14)+\frac{21}{4736} \mathrm{e} \cos (6)-\frac{3}{7424} \mathrm{e} \sin (12)-\frac{15}{1664} \mathrm{e} \sin (8)+\frac{75}{115328} \mathrm{e} \sin (30)-\frac{45}{256} \mathrm{e} \sin (2)+\frac{366}{629} \mathrm{e}^{-1} \sin (1) \cos (1) \\
& +\frac{6}{37} \mathrm{e} \sin (1) \cos (1)^{5}-\frac{15}{410624} \mathrm{e} \cos (20)-\frac{75}{102656} \mathrm{e} \sin (20)+\frac{57}{73984} \mathrm{e} \sin (38)+\frac{3}{147968} \mathrm{e} \cos (38)+\frac{68661}{644096} \mathrm{e}^{-1}-\frac{45}{166016} \mathrm{e} \sin (36)+\frac{1}{37} \\
& \mathrm{e} \cos (1)^{6}+\frac{21}{2176} \mathrm{e} \sin (4)-\frac{1}{29696} \mathrm{e} \cos (12)-\frac{105}{40192} \mathrm{e} \sin (28)-\frac{81}{629} \mathrm{e} \cos (1)^{4}+\frac{9}{1664} \mathrm{e} \sin (18)+\frac{1}{3328} \mathrm{e} \cos (18)-\frac{75}{204928} \mathrm{e} \sin (40) \\
& -\frac{15}{1639424} \mathrm{e} \cos (40)-\frac{3}{29504} \mathrm{e} \sin (48)-\frac{75}{8224} \mathrm{e} \sin (16)-\frac{5}{664064} \mathrm{e} \cos (36)+\frac{3}{51712} \mathrm{e} \cos (10)-\frac{15}{160768} \mathrm{e} \cos (28)+\frac{5}{230656} \mathrm{e} \cos (30) \\
& -\frac{15}{13312} \mathrm{e} \cos (8)+\frac{183}{629} \mathrm{e} \cos (1)^{2}-\frac{75}{131584} \mathrm{e} \cos (16)+\frac{3}{1280512} \mathrm{e} \cos (50)-\frac{1}{472064} \mathrm{e} \cos (48)-\frac{1}{3687424} \mathrm{e} \cos (60)-\frac{15}{921856} \mathrm{e} \sin (60) \\
& +\frac{195}{86656} \mathrm{e} \sin (26)+\frac{15}{173312} \mathrm{e} \cos (26)-\frac{3}{51712} \mathrm{e}^{-1} \cos (10)+\frac{15}{160768} \mathrm{e}^{-1} \cos (28)-\frac{5}{230656} \mathrm{e}^{-1} \cos (30)+\frac{15}{13312} \mathrm{e}^{-1} \cos (8)-\frac{183}{629} \mathrm{e}^{-1} \cos (1)^{2} \\
& +\frac{75}{131584} \mathrm{e}^{-1} \cos (16)-\frac{3}{1280512} \mathrm{e}^{-1} \cos (50)+\frac{1}{472064} \mathrm{e}^{-1} \cos (48)+\frac{1}{3687424} \mathrm{e}^{-1} \cos (60)-\frac{15}{921856} \mathrm{e}^{-1} \sin (60)+\frac{195}{86656} \mathrm{e}^{-1} \sin (26) \\
& -\frac{15}{173312} \mathrm{e}^{-1} \cos (26)-\frac{324}{629} \mathrm{e} \sin (1) \cos (1)^{3}+\frac{63}{2368} \mathrm{e}^{-1} \sin (6)+\frac{15}{25856} \mathrm{e}^{-1} \sin (10)-\frac{21}{8704} \mathrm{e}^{-1} \cos (4)-\frac{68661}{644096} \mathrm{e}-\frac{15}{36928} \mathrm{e} \sin (24) \\
& -\frac{5}{295424} \mathrm{e} \cos (24)+\frac{366}{629} \mathrm{e} \sin (1) \cos (1)+\frac{45}{512} \mathrm{e}^{-1} \cos (2)+\frac{75}{640256} \mathrm{e}^{-1} \sin (50)+\frac{105}{25216} \mathrm{e}^{-1} \sin (14)-\frac{15}{50432} \mathrm{e}^{-1} \cos (14)-\frac{21}{4736} \mathrm{e}^{-1} \cos (6) \\
& -\frac{3}{7424} \mathrm{e}^{-1} \sin (12)-\frac{15}{1664} \mathrm{e}^{-1} \sin (8)+\frac{75}{115328} \mathrm{e}^{-1} \sin (30)-\frac{45}{256} \mathrm{e}^{-1} \sin (2)-\frac{15}{36928} \mathrm{e}^{-1} \sin (24)+\frac{5}{295424} \mathrm{e}^{-1} \cos (24)+\frac{15}{410624} \mathrm{e}^{-1} \cos (20) \\
& -\frac{75}{102656} \mathrm{e}^{-1} \sin (20)+\frac{57}{73984} \mathrm{e}^{-1} \sin (38)-\frac{3}{147968} \mathrm{e}^{-1} \cos (38)-\frac{45}{166016} \mathrm{e}^{-1} \sin (36)-\frac{1}{37} \mathrm{e}^{-1} \cos (1)^{6}+\frac{21}{2176} \mathrm{e}^{-1} \sin (4)+\frac{1}{29696} \mathrm{e}^{-1} \cos (12) \\
& -\frac{105}{40192} \mathrm{e}^{-1} \sin (28)+\frac{81}{629} \mathrm{e}^{-1} \cos (1)^{4}+\frac{9}{1664} \mathrm{e}^{-1} \sin (18)-\frac{1}{3328} \mathrm{e}^{-1} \cos (18)-\frac{75}{204928} \mathrm{e}^{-1} \sin (40)+\frac{15}{1639424} \mathrm{e}^{-1} \cos (40)
\end{aligned}
$$

Symbolic Computing (

SymPy
Manipulate formulas exactly.
When you want numbers, evaluate the formulas.
PROBLEM: Most problems cannot be solved symbolically.
Even when they can, symbolic expressions tend to grow exponentially.

Symbolic Computing (Syple, SymPy

Manipulate formulas exactly. When you want numbers, evaluate the formulas.

PROBLEM: Most problems cannot be solved symbolically. Even when they can, symbolic expressions tend to grow exponentially.

Symbolic Computing
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.
 PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

Numerical Computing (Matlab, C, Fortran, etc.)

Work with numerical approximations instead of exact expressions. Perform each operation to relative accuracy of about 10^{-16}.
This kills the combinatorial explosion.
PROBLEM: What if we want not just numbers, but functions like $f(x)$?

Symbolic Computing
 Manipulate formulas exactly.
 When you want numbers, evaluate the formulas.
 PROBLEM: Most problems cannot be solved symbolically.
 Even when they can, symbolic expressions tend to grow exponentially.

Numerical Computing (SciPy / NumPy etc)

Work with numerical approximations instead of exact expressions. Perform each operation to relative accuracy of about 10^{-16}. This kills the combinatorial explosion.

PROBLEM: What if we want not just numbers, but functions like $f(x)$?

Symbolic Computing

Manipulate formulas exactly.
When you want numbers, evaluate the formulas.
PROBLEM: Most problems cannot be solved symbolically.
Even when they can, symbolic expressions tend to grow exponentially.

4 Chebfun Computing:
 "Computing with symbolic feel and numerical speed"

Numerical Computing (MattSciPy,/FNumPy,-etc.)

Work with numerical approximations instead of exact expressions. Perform each operation to relative accuracy of about 10^{-16}. This kills the combinatorial explosion.

PROBLEM: What if we want not just numbers, but functions like $f(x)$?

Philosophy:

Numerical computing with functions.
Plan:
Overload standard Matlab vector routines with continuous (1D) analogues.

Implementation:

Machine precision interpolation with Chebshev polynomials.

Philosophy:

Numerical computing with functions. != Hybrid symbolic/numeric computing.

The software:

Version 4.1 release 01/08/2011. BSD(new) license. Written in Matlab. Nightly builds (www.chebfun.org/nightly/)

The software:

Version 4.1 release 01/08/2011. BSD(new) license.
Written in Matlab.
Nightly builds (www.chebfun.org/nightly/)

This talk:

A brief introduction via some demos. Description of one or two core routines. Examples of some more advanced features.

The Project

+ Started in 2006, open-source in 2011 with v4.0
+ ~2500 downloads (+MWFE) since v4.0 release in March '11
$+\sim 15$ contributors? (Still mostly in Oxford...)
+ SVN for version control and Trac for bug reports/wiki
$+\sim 1000$ M-files \& $\sim 60,000$ lines of code
$+\sim 20-100$ citations? (It's hard to count!)
+~100 online Examples (I'll show you some later!)

The People

Matlab Demo

How it works

How it works

Function evaluations of f at Chebyshev nodes

$$
\mathrm{F}(\mathrm{x}) \approx \sum^{\downarrow \mathrm{FFT}} \mathrm{c}_{\mathrm{k}} \mathrm{~T}_{\mathrm{k}}(\mathrm{x})
$$

How it works

Function evaluations of f at Chebyshev nodes

$$
\begin{gathered}
\qquad \begin{array}{l}
\downarrow \mathrm{FFT} \\
+\mathrm{T}_{\mathrm{k}}(\mathrm{x})=\cos (\mathrm{k} \operatorname{acos}(\mathrm{x})) \Rightarrow\left|\mathrm{T}_{\mathrm{k}}(\mathrm{x})\right| \leqslant 1 \\
+\mathrm{f} \in \mathrm{c}_{\mathrm{k}} \mathrm{~T}_{\mathrm{k}}(\mathrm{x}) \\
{[-1,1] \Rightarrow \mathrm{c}_{\mathrm{k}}=O\left(\mathrm{k}^{d}\right), \mathrm{f} \in \mathrm{H}[-1,1] \Rightarrow \mathrm{c}_{\mathrm{k}}=O\left(\mathrm{e}^{-\mathrm{ck}}\right)}
\end{array}
\end{gathered}
$$

How it works

Function evaluations of f at Chebyshev nodes

$$
\begin{gathered}
\qquad \begin{array}{l}
\downarrow \mathrm{FFT} \\
+\mathrm{T}_{\mathrm{k}}(\mathrm{x})=\cos (\mathrm{k} \operatorname{acos}(\mathrm{x})) \Rightarrow\left|\mathrm{T}_{\mathrm{k}}(\mathrm{x})\right| \leqslant 1 \\
+\mathrm{f} \in \mathrm{C}_{\mathrm{k}}(\mathrm{x}) \\
{[-1,1] \Rightarrow \mathrm{c}_{\mathrm{k}}=O\left(\mathrm{k}^{\mathrm{d}}\right), \mathrm{f} \in \mathrm{H}[-1,1] \Rightarrow \mathrm{c}_{\mathrm{k}}=O\left(\mathrm{e}^{-\mathrm{ck}}\right)}
\end{array}
\end{gathered}
$$

Algorithm:

1. Interpolate at $n+1$ Chebyshev points.
2. Convert function values to coefficients.
3. Converged? No \rightarrow increase n \& repeat, Yes \rightarrow done.

How it works

$$
\begin{aligned}
& \gg f=\text { chebfun(@(x) 1./(1+25*(x+.1).^2)); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works

$$
\begin{aligned}
& \gg \mathrm{f}=\text { chebfun(@(x) 1./(1+25*(x+.1).^2), 9); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works

$$
\begin{aligned}
& \gg f=\text { chebfun(@(x) 1./(1+25*(x+.1).^2), 17); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works

$$
\begin{aligned}
& \gg f=\text { chebfun(@(x) 1./(1+25*(x+.1).^2), 33); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works

$$
\begin{aligned}
& \gg f=\text { chebfun(@(x) 1./(1+25*(x+.1).^2), 65); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

$\theta 00$
Figure 1

How it works

$$
\begin{aligned}
& \gg \text { f chebfun(@(x) 1./(1+25*(x+.1).^2), 129); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works

$$
\begin{aligned}
& \text { >> f chebfun(@(x) 1./(1+25*(x+.1).^2), 257); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

$\Theta O \theta$

Figure 1

How it works

$$
\begin{aligned}
& \gg \text { f chebfun(@(x) 1./(1+25*(x+.1).^2)); } \\
& \gg \text { chebpolyplot(f); }
\end{aligned}
$$

How it works (cont.)

+ Evaluation \rightarrow Barycentric formula
+ Integration \rightarrow Clenshaw-Curtis quadrature
+ Differentiation \rightarrow Recurrence on coefficients
+ Rootfinding \rightarrow Colleague matrix of coefficients

Differential Eqns

Chebyshev Spectral Methods

(One slide introduction)

$$
f(x)=p_{n}(x) \Rightarrow f^{\prime}(x) \approx p_{n}^{\prime}(x)
$$

Chebyshev Spectral Methods

(One slide introduction)

$$
f(\underline{x})=p_{\mathrm{n}}(\underline{x}) \Rightarrow f^{\prime}(\underline{x}) \approx p_{\mathrm{n}}^{\prime}(\underline{x})
$$

Chebyshev Spectral Methods

(One slide introduction)

$$
\begin{gathered}
f(\underline{x})=p_{n}(\underline{x}) \Rightarrow f^{\prime}(\underline{x}) \approx p_{n}^{\prime}(\underline{x}) \\
p_{n}^{\prime}(\underline{x})=D_{n} p_{n}(\underline{x}), \quad p_{n}^{\prime \prime}(\underline{x})=D_{n}^{2} p_{n}(\underline{x}), \ldots .
\end{gathered}
$$

Chebyshev Spectral Methods

(One slide introduction)

$$
\begin{gathered}
f(\underline{x})=p_{n}(\underline{x}) \Rightarrow f^{\prime}(\underline{x}) \approx p_{n}^{\prime}(\underline{x}) \\
p_{n}^{\prime}(\underline{x})=D_{n} p_{n}(\underline{x}), \quad p_{n}^{\prime \prime}(\underline{x})=D_{n}^{2} p_{n}(\underline{x}), \ldots \\
0.1 u^{\prime \prime}+u^{\prime}+x u=1 \\
\left(0.1 D_{n}^{2}+D_{n}+\operatorname{diag}(\underline{x})\right) p_{n}(\underline{x})=L_{n} p_{n}(\underline{x})=1 \\
u(\underline{x}) \approx p_{n}(\underline{x})=L_{n} \backslash \underline{1} \quad \text { (Plus some boundary conditions...) }
\end{gathered}
$$

Chebyshev Spectral Methods
 (One slide introduction)

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Chebyshev Spectral Methods
 (One slide introduction)

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Chebyshev Spectral Methods (One slide introduction)

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Chebyshev Spectral Methods
 (One slide introduction)

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Chebyshev Spectral Methods

(One slide introduction)

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Chebyshev Spectral Methods

 (One slide introduction)$$
u_{n}=f_{n}
$$

+ Check for happiness in u
+ If not happy, increase n
+ If happy, then done!

Nonlinear ODEs, $N(u, x)=0$.

(Newton iteration)

+ Extend idea of rootfinding via Newton method to continuous framework \& solve linear subproblems.

$$
u \leftarrow u-\operatorname{diff}(N(u, x), u) \backslash N(u, x)
$$

+ Requires (Fréchet) derivatives of the operators involved, which are obtained by Automatic Differentiation (AD).

Matlab Demo

Examples

Eigenvalue Repulsion

If you morph one $N \times N$ matrix A into the another B by the formula

$$
C(t)=(1-t) A+t B,
$$

then ast: $0 \rightarrow 1$, the eigenvalues change continuously from those of A to those of B.
The phenomenon of "level repulsion", or "eigenvalue avoided crossings", goes back to von Neumann and Wigner, and states that with probability 1 there is no t for which C has a multiple eigenvalue.
We can verify this in Chebfun!

Eigenvalue Repulsion

If you morph one $N x N$ matrix A into the another B by the formula

$$
C(t)=(1-t) A+t B,
$$

then as $t: 0 \rightarrow 1$, the eigenvalues change continuously from those of A to those of B.
The phenomenon of "level repulsion", or "eigenvalue avoided crossings", goes back to von Neumann and Wigner, and states that with probability 1 there is no t for which C has a multiple eigenvalue.
We can verify this in Chebfun!

```
n = 10;
A = randn(n); A = A+A';
B = randn(n); B = B+B';
ek = @(e,k) e(k); % returns kth element of the vector e
eigA = @(A) sort(eig(A)); % returns sorted eigenvalues of the matrix A
eigk = @(A,k) ek(eigA(A),k); % returns kth eigenvalue of the matrix A
for k = 1:n
    E(:,k) = chebfun(@(t) eigk((1-t)*A+t*B,k),[0 1]);
end
plot(E)
```


Eigenvalue Repulsion

 If you morph c$\Theta \bigcirc \bigcirc$
then ast:0
The phenome von Neumann has a multiple
We can verify

```
n = 10;
A = randn(n);
B = randn(n);
ek = @(e,k)
eigA = @(A)
eigk = @(A,k)
for k = 1:n
    E(:,k) = c
end
plot(E)
```

Figure 1

Eigenvalues of (1-t) $A+t B$
;", goes back to , t for which C

Optics: Eigenvalues of Fox-Li

In the field of optics, integral operators arise that have a complex symmetric (but non-Hermitian) oscillatory kernel. An example is the following linear Fredholm operator L, associated with the names of Fox and Li:

$$
\mathrm{Lu}(\mathrm{x})=\mathrm{v}(\mathrm{x})=\sqrt{\mathrm{iF} / \pi} \int_{-1}^{1} \mathrm{~K}(\mathrm{x}, \mathrm{~s}) \mathrm{u}(\mathrm{~s}) \mathrm{ds}
$$

L maps a function u defined on $[-1,1]$ to another function $v=$ Lu defined on $[-1,1]$. The number F is a positive real parameter, the Fresnel number, and the kernel function $K(x, s)$ is

$$
\mathrm{K}(\mathrm{x}, \mathrm{~s})=\exp \left(-\mathrm{iF}(\mathrm{x}-\mathrm{s})^{2}\right)
$$

Compute the 80 largest eigenvalues of L .

Optics: Eigenvalues of Fox-Li

In the field of optics, integral operators arise that have a complex symmetric (but non-Hermitian) oscillatory kernel. An example is the following linear Fredholm operator L , associated with the names of Fox and Li :

$$
L u(x)=v(x)=\sqrt{i F / \pi} \int_{-1}^{1} K(x, s) u(s) d s
$$

L maps a function u defined on $[-1,1]$ to another function $v=$ Lu defined on $[-1,1]$. The number F is a positive real parameter, the Fresnel number, and the kernel function $K(x, s)$ is

$$
K(x, s)=\exp \left(-i F(x-s)^{2}\right)
$$

Compute the 80 largest eigenvalues of L .

```
F = 64*pi; % Fresnel number
K = @ (x,s) exp(-1i*F* (x-s).^2 ); % Kernel
L = sqrt(li*F/pi)*fred(K,domain(-1,1)); % Fredholm integral operator
lam = eigs(L,80,'lm'); % Compute eigenvalues
plot(lam); % Plot
```


Optics: Eigenvalues of Fox-Li

In the field of optics, integral operators arise that have a complex symmetric (but non-Hermitian) nerillatnru karnal Anavamnlo ic tha fallnuring linear Fredholm operator L

L maps a function uc The number F is a po function $K(x, s)$ is

Compute the 80 larg

```
F = 64*pi;
```

F = 64*pi;
K = @(x,s) exp(-
K = @(x,s) exp(-
L = sqrt(1i*F/pi
L = sqrt(1i*F/pi
lam = eigs(L,80,
lam = eigs(L,80,
plot(lam);

```
plot(lam);
```


defined on [-1,1]. and the kernel

Many more online

OXFORD UNIVERSITY
 MATHEMATICAL INSTITUTE *Follow Tweet \checkmark Like

CHEBFUN EXAMPLES

The quickest way to solve your problem with Chebfun may be to find a similar problem someone else has solved to use as a template. This page connects you to dozens of such templates, called Chebfun Examples. Each example is an M-file producing text and/or graphical output which executes, in most cases, in less than 5 seconds. You can also execute the example with Matlab's PUBLISH command to get a more informative story. Type open(publish('filename')) to see the quickest version on your screen or publish('filename','latex') for a better formatted LaTeX version, which will appear in a directory called html. The published output is also available for direct download as a pdf file.

Each example is signed by the author, and we welcome new contributions. Please send drafts to discuss@chebfun.org with an indication of which section they belong in. To help maintain some uniformity across the examples, please take a look at the formatting conventions.

1. Rootfinding
2. Optimization
3. Quadrature
4. Linear algebra
5. Approximation of functions
6. Complex variables
7. Geometry
8. Statistics
9. Ordinary differential equations
10. Integral and integro-differential equations
11. Partial differential equations

A complete listing of the Examples can be found here.

The Future

The Future

+ Improve speed and usability/simplicity
+ Improve ODE and PDE solvers
+ Higher dimensions?
+ Increase developer and user base (incl. publications)
+ Improve connections to real-world applications
+ Port to other languages? (C, Octave, Python?)

The End

The End

Thank you for listening!*

www.chebfun.org

Colleague Matrices \& Rootfinding

Seek the roots of the Chebyshev polynomial $p_{n}(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ Recurrence relation for the Chebyshev polynomials

$$
T_{0}(x)=1, T_{1}(x)=x, T_{j+1}=2 x T_{j}(x)-T_{j-1}
$$

Colleague Matrices \& Rootfinding

Seek the roots of the Chebyshev polynomial $p_{n}(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ Recurrence relation for the Chebyshev polynomials

$$
T_{0}(r)=1, T_{1}(r)=r,\left(T_{j+1}(r)+T_{j-1}(r)\right) / 2=r T_{j}(r)
$$

Colleague Matrices \& Rootfinding

Seek the roots of the Chebyshev polynomial $p_{n}(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ Recurrence relation for the Chebyshev polynomials

$$
T_{0}(r)=1, T_{1}(r)=r,\left(T_{j+1}(r)+T_{j-1}(r)\right) / 2=r T_{j}(r)
$$

Consider the 'Colleague' matrix

$$
\left(\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & \ddots & \ddots & \ddots \\
0 & 0 & 1 / 2 & 0
\end{array}\right)-\frac{1}{2 c_{n}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
c_{0} & \cdots & c_{n-1}
\end{array}\right)\right]
$$

Colleague Matrices \& Rootfinding

Seek the roots of the Chebyshev polynomial $p_{n}(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ Recurrence relation for the Chebyshev polynomials

$$
T_{0}(r)=1, T_{1}(r)=r,\left(T_{j+1}(r)+T_{j-1}(r)\right) / 2=r T_{j}(r)
$$

Consider the 'Colleague' matrix. Eigenvalues are roots of p_{n} !

$$
\left[\left.\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & \ddots & \ddots & \ddots \\
0 & 0 & 1 / 2 & 0
\end{array}\right)-\frac{1}{2 c_{n}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
c_{0} & \cdots & c_{n-1}
\end{array}\right) \right\rvert\, \begin{array}{c}
\mathrm{T}_{0}(r) \\
\mathrm{T}_{1}(r) \\
\vdots \\
\mathrm{T}_{n-1}(r)
\end{array}\right)=r\left(\begin{array}{c}
\mathrm{T}_{0}(r) \\
\mathrm{T}_{1}(r) \\
\vdots \\
\mathrm{T}_{n-1}(r)
\end{array}\right]
$$

Colleague Matrices \& Rootfinding

Seek the roots of the Chebyshev polynomial $p_{n}(x)=\sum_{j=0}^{n} c_{j} T_{j}(x)$ Recurrence relation for the Chebyshev polynomials

$$
T_{0}(r)=1, T_{1}(r)=r,\left(T_{j+1}(r)+T_{j-1}(r)\right) / 2=r T_{j}(r)
$$

Consider the 'Colleague' matrix. Eigenvalues are roots of p_{n} !

$$
\left[\begin{array}{l}
\left.\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 / 2 & 0 & 1 / 2 & 0 \\
0 & \ddots & \ddots & \ddots \\
0 & 0 & 1 / 2 & 0
\end{array}\right)-\frac{1}{2 c_{n}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
c_{0} & \cdots & c_{n-1}
\end{array}\right) \right\rvert\,\left[\begin{array}{c}
T_{0}(r) \\
T_{1}(r) \\
\vdots \\
T_{n-1}(r)
\end{array}\right]=r\left(\begin{array}{c}
T_{0}(r) \\
T_{1}(r) \\
\vdots \\
T_{n-1}(r)
\end{array}\right] \\
1 / 2 T_{n-1}(r)-\frac{1}{2 c_{n}} \sum_{j=0}^{n} c_{j} T_{j}(r)=r T_{n-1}(r) \Rightarrow p_{n}(0)=0
\end{array}\right.
$$

