The M4RI \& M4RIE libraries for linear algebra over \mathbb{F}_{2} and small extensions

Martin R. Albrecht

Sage/FLINT Days, 19.12.2011, Warwick (UK)

Outline

M4RI
Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

Outline

M4RI
Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

M4RM [ADKF70] I

Consider $C=A \cdot B(A$ is $m \times \ell$ and B is $\ell \times n)$.
A can be divided into ℓ / k vertical "stripes"

$$
A_{0} \ldots A_{(\ell-1) / k}
$$

of k columns each. B can be divided into ℓ / k horizontal "stripes"

$$
B_{0} \ldots B_{(\ell-1) / k}
$$

of k rows each. We have:

$$
C=A \cdot B=\sum_{0}^{(\ell-1) / k} A_{i} \cdot B_{i} .
$$

M4RM [ADKF70] II

$$
\begin{gathered}
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right), B=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right), A_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right) \\
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right), B_{0}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), B_{1}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
A_{0} \cdot B_{0}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), A_{1} \cdot B_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

M4RM: Algorithm $\mathcal{O}\left(n^{3} / \log n\right)$

1 begin

Algorithm 1: M4RM

Strassen-Winograd [Str69] Multiplication

- fastest known pratical algorithm
- complexity: $\mathcal{O}\left(n^{\log _{2} 7}\right)$
- linear algebra constant: $\omega=\log _{2} 7$
- M4RM can be used as base case for small dimensions
\rightarrow optimisation of this base case

Cache Friendly M4RM I

Cache Friendly M4RM II

```
1 begin
2 C & create an m\timesn matrix with all entries 0;
for 0}\leqstart<m/\mp@subsup{b}{s}{}\mathrm{ do
4 for 0 \leqi< \ell/k) do
                                    we regenerate T for each block
    T}\leftarrow\operatorname{MakeTABLE}(B,i\timesk,0,k)
                for 0}\leqs<\mp@subsup{b}{s}{}\mathrm{ do
                j\longleftarrowstart }\times\mp@subsup{b}{s}{}+s
                id \longleftarrow READBITS}(A,j,i\timesk,k)
                add row id from T to row j of C;
10 return C;
1 1 \text { end}
```


$t>1$ Gray Code Tables I

- actual arithmetic is quite cheap compared to memory reads and writes
- the cost of memory accesses greatly depends on where in memory data is located
- try to fill all of L1 with Gray code tables.
- Example: $k=10$ and 1 Gray code table $\rightarrow 10$ bits at a time. $k=9$ and 2 Gray code tables, still the same memory for the tables but deal with 18 bits at once.
- The price is one extra row addition, which is cheap if the operands are all in cache.

$t>1$ Gray Code Tables II

1 begin

$2 \quad C \longleftarrow$ create an $m \times n$ matrix with all entries 0 ;
3 for $0 \leq i<(\ell /(2 k))$ do
$T_{0} \leftarrow \operatorname{MakETABLE}(B, i \times 2 k, 0, k)$;
$T_{1} \leftarrow \operatorname{MAKETABLE}(B, i \times 2 k+k, 0, k)$;
for $0 \leq j<m$ do
$i d_{0} \longleftarrow \operatorname{ReadBits}(A, j, i \times 2 k, k) ;$
$i d_{1} \longleftarrow \operatorname{REAdBits}(A, j, i \times 2 k+k, k)$;
add row $i d_{0}$ from T_{0} and row $i d_{1}$ from T_{1} to row j of C;

Results: Multiplication

Figure: 2.66 Ghz Intel i7, 4GB RAM

Small Matrices

M4RI is efficient for large matrices, but not necessarily for small matrices.

	Thomé	M4RI
transpose	$4.5097 \mu \mathrm{~s}$	$0.6352 \mu \mathrm{~s}$
copy	$0.2019 \mu \mathrm{~s}$	$0.2674 \mu \mathrm{~s}$
add	$0.2533 \mu \mathrm{~s}$	$0.2921 \mu \mathrm{~s}$
mul	$0.2535 \mu \mathrm{~s}$	$0.4472 \mu \mathrm{~s}$

Table: 64×64 matrices (matops.c)

Note

One performance bottleneck is that our matrix structure is much more complicated than Emmanuel's.

Results: Multiplication Revisited

Figure: 2.66 Ghz Intel i7, 4GB RAM

Outline

M4RI
Multiplication
Elimination
Projects
\section*{M4RIE}
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

PLE Decomposition I

Definition (PLE)

> Let A be a $m \times n$ matrix over a field K. A PLE decomposition of A is a triple of matrices P, L and E such that P is a $m \times m$ permutation matrix, L is a unit lower triangular matrix, and E is
> a $m \times n$ matrix in row-echelon form, and

$$
A=P L E .
$$

PLE decomposition can be in-place, that is L and E are stored in A and P is stored as an m-vector.

PLE Decomposition II

From the PLE decomposition we can

- read the rank r,
- read the row rank profile (pivots),
- compute the null space,
- solve $y=A x$ for x and
- compute the (reduced) row echelon form.
E. C.-P. Jeannerod, C. Pernet, and A. Storjohann. Fast gaussian elimination and the PLE decomposition. in preparation, 30 pages, 2011.

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ I

Write

$$
A=\left(\begin{array}{ll}
A_{W} & A_{E}
\end{array}\right)=\left(\begin{array}{ll}
A_{N W} & A_{N E} \\
A_{S W} & A_{S E}
\end{array}\right)
$$

Main steps:

1. Call PLE on A_{W}
2. Apply row permutation to A_{E}
3. $L_{N W} \leftarrow$ the lower left triangular matrix in $A_{N W}$
4. $A_{N E} \leftarrow L_{N W}^{-1} \times A_{N E}$
5. $A_{S E} \leftarrow A_{S E}+A_{S W} \times A_{N E}$
6. Call PLE on $A_{S E}$
7. Apply row permutation to $A_{S W}$
8. Compress L

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ II

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ III

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ IV

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ V

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ VI

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ VII

Block Iterative PLE Decomposition I

We need an efficient base case for PLE Decomposition

- block recursive PLE decomposition gives rise to a block iterative PLE decomposition
- choose blocks of size $k=\log n$ and use M4RM for the "update" multiplications
- this gives a complexity $\mathcal{O}\left(n^{3} / \log n\right)$

Block Iterative PLE Decomposition II

Block Iterative PLE Decomposition III

Block Iterative PLE Decomposition IV

Block Iterative PLE Decomposition V

Block Iterative PLE Decomposition VI

Block Iterative PLE Decomposition VII

Block Iterative PLE Decomposition VIII

Block Iterative PLE Decomposition IX

Block Iterative PLE Decomposition X

[^0]
Block Iterative PLE Decomposition XI

Results: Reduced Row Echelon Form

Figure: 2.66 Ghz Intel i7, 4GB RAM

Results: Row Echelon Form

Using one core - on sage.math - we can compute the echelon form of a $500,000 \times 500,000$ dense random matrix over \mathbb{F}_{2} in

$$
9711 \text { seconds }=2.7 \text { hours }\left(c \approx 10^{-12}\right) .
$$

Using four cores decomposition we can compute the echelon form of a random dense $500,000 \times 500,000$ matrix in

$$
3806 \text { seconds }=1.05 \text { hours. }
$$

> Anybody got a 256GB RAM machine idlying around so that we can try $1,000,000 \times 1,000,000$ which should take about 20 hours on a single CPU? You know, for science!

Outline

M4RI
Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

Sensitivity to Sparsity

Figure: Gaussian elimination of $10,000 \times 10,000$ matrices on Intel 2.33GHz Xeon E5345 comparing Magma 2.17-12 and M4RI 20111004.

Linear Algebra for Gröbner Basis

Problem	matrix dimensions	density	PLE	M4RI	GB
HFE 25 matrix 5 (5.1M)	12307×13508	0.07600	1.03	0.59	0.81
HFE 30 matrix 5 (16M)	19907×29323	0.06731	4.79	2.70	4.76
HFE 35 matrix 5 (37M)	29969×55800	0.05949	19.33	9.28	19.51
Mutant matrix (39M)	26075×26407	0.18497	5.71	3.98	2.10
random n=24, m=26 matrix 3 (30M)	37587×38483	0.03832	20.69	21.08	19.36
random n=24, m=26 matrix 4 (24M)	37576×32288	0.04073	18.65	28.44	17.05
SR(2,2,2,4) compressed, matrix 2 (328K)	5640×14297	0.00333	0.40	0.29	0.18
SR(2,2,2,4) compressed, matrix 4 (2.4M)	13665×17394	0.01376	2.18	3.04	2.04
SR(2,2,2,4) compressed, matrix 5 (2.8M)	11606×16282	0.03532	1.94	4.46	1.59
SR(2,2,2,4) matrix 6 (1.4M)	13067×17511	0.00892	1.90	2.09	1.38
SR(2,2,2,4) matrix 7 (1.7M)	12058×16662	0.01536	1.53	1.93	1.66
SR(2,2,2,4) matrix 9 $(36 M)$	115834×118589	0.00376	528.21	578.54	522.98

Multi-core Support

Parallel speed-up

M4RI BOpS \& Speed-up

PLE BOpS \& Speed-up

GF(2) on GFX

Tabelle 3.12: Zeiten auf der GeForce GTX 295 und GeForce GTX 480.

Matrixgröße	GeForce GTX 295	GeForce GTX 480
9.984×10.240	0,9 Sek.	1,2 Sek.
16.384×16.384	2,47 Sek.	2,9 Sek.
20.000×20.480	4,63 Sek.	4,63 Sek.
32.000×32.768	13,3 Sek.	12,2 Sek.
64.000×65.536	-	70,74 Sek.

Tabelle 3.13: Zeiten auf der CPU [6].

Matrix Dimension	M4RI/M4RI 20090105^{7}	M4RI/M4RI 20100817^{2}
10.000×10.000	1,532	1,050
16.384×16.384	6,597	3,890
20.000×20.000	12,031	7,250
32.000×32.000	40,768	22,560
64.000×64.000	241,017	124,480
[1] 64- bit Debian/GNU Linux, 2.33 Ghz Core2Duo (Macbook Pro, 2nd. Gen.)		
[2] 64- bit Debian/GNU Linux, 2.6 Ghz Intel i7 (Macbook Pro 6,2)		

E. Denise Demirel

Effizientes Lösen linearer Gleichungssysteme über GF(2) mit GPUs
Diplomarbeit, TU Darmstadt, September 2010

Outline

M4RI

Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

Motivation I

Your NTL patch worked perfectly for me first try. I tried more benchmarks (on Pentium-M 1.8Ghz):

```
[...] //these are for GF(2^8), malb
sage: n=1000; m=ntl.mat_GF2E(n,n,[ ntl.GF2E_random() for i in xrange(n^2) ])
sage: time m.echelon_form()
1000
Time: CPU 29.72 s, Wall: 43.79 s
```

This is pretty good; vastly better than what's was in SAGE by default, and way better than PARI. Note that MAGMA is much faster though (nearly 8 times faster):
[...]
$>\mathrm{n}:=1000 ; \mathrm{A}:=\operatorname{MatrixAlgebra}\left(\mathrm{GF}\left(2^{\wedge} 8\right), \mathrm{n}\right)!\left[\operatorname{Random}\left(\operatorname{GF}\left(2^{\wedge} 8\right)\right):\right.$ i in $\left.\left[1 . . \mathrm{n}^{\wedge} 2\right]\right]$;
> time E := EchelonForm(A);
Time: 3.440

MAGMA uses (1) [...] and (2) a totally different algorithm for computing the echelon form. [...] As far as I know, the MAGMA method is not implemented anywhere in the open source world. But l'd love to be wrong about that... or even remedy that.

- W. Stein in 01/2006 replying to my 1st non-trivial patch to Sage

Motivation II

The situation has not improved much in 2011:

System	Time in ms
Sage 4.7.2	97,000
NTL 5.4.2	85,000
LinBox SVN + patches	460
GAP 4.412	210
Magma 2.15	13
this work	5.5

Table: Product of two dense $1,000 \times 1,000$ matrix over $\mathbb{F}_{2^{2}}$.

Representation of Elements I

Elements in $\mathbb{F}_{2^{e}} \cong \mathbb{F}_{2}[x] / f$ can be written as

$$
a_{0} \alpha^{0}+a_{1} \alpha^{1}+\cdots+a_{e-1} \alpha^{e-1} .
$$

We identify the bitstring a_{0}, \ldots, a_{e-1} with

- the element $\sum_{i=0}^{e-1} a_{i} \alpha^{i} \in \mathbb{F}_{2^{e}}$ and
- the integer $\sum_{i=0}^{e-1} a_{i} 2^{i}$.

In the datatype mzed_t we pack several of those bitstrings into one machine word:
$a_{0,0,0}, \ldots, a_{0,0, e-1}, a_{0,1,0}, \ldots, a_{0,1, e-1}, \ldots, a_{0, n-1,0}, \ldots, a_{0, n-1, e-1}$.

Additions are cheap, scalar multiplications are expensive.

Representation of Elements II

- Instead of representing matrices over $\mathbb{F}_{2^{e}}$ as matrices over polynomials we may represent them as polynomials with matrix coefficients.
- For each degree we store matrices over \mathbb{F}_{2} which hold the coefficients for this degree.
- The data type mzd_slice_t for matrices over $\mathbb{F}_{2^{e}}$ internally stores e-tuples of M4RI matrices, i.e., matrices over \mathbb{F}_{2}.

Additions are cheap, scalar multiplications are expensive.

Representation of Elements III

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\alpha^{2}+1 & \alpha \\
\alpha+1 & 1
\end{array}\right) \\
& =\left[\begin{array}{ll}
\square 101 & \square 010 \\
\square 011 & \square 001
\end{array}\right] \\
& =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\right)
\end{aligned}
$$

Figure: 2×2 matrix over \mathbb{F}_{8}

Outline

M4RI
Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

The idea I

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
$3 \quad$ for $0 \leq j<n$ do
4
$L C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ;$
5 return C;
6 end

The idea II

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
for $0 \leq j<n$ do
$L C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /$ cheap
5 return C;
6 end

The idea III

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
for $0 \leq j<n$ do
$\left\lfloor C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /\right.$ expensive
5 return C;
6 end

The idea IV

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
$3 \quad$ for $0 \leq j<n$ do
$L C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /$ expensive
5 return C;
6 end

But there are only 2^{e} possible multiples of B_{i}.

The idea V

	Input: $A-m \times n$ matrix
	Input: $B-n \times k$ matrix
2	for $0 \leq i<m$ do
3	for $0 \leq j<2^{e}$ do
4	$T_{j} \longleftarrow j \times B_{i} ;$
5	for $0 \leq j<n$ do
6	$x \longleftarrow A_{j, i}$
7	$C_{j} \longleftarrow C_{j}+T_{\chi} ;$
8	return C;

$m \cdot n \cdot k$ additions, $m \cdot 2^{e} \cdot k$ multiplications.

Gaussian elimination \& PLE decomposition

Input: $A-m \times n$ matrix
1 begin

2	$r \longleftarrow 0 ;$
3	for $0 \leq j<n$ do

$$
\text { for } r \leq i<m \text { do }
$$

$$
\text { if } A_{i, j}=0 \text { then continue; }
$$

$$
\text { rescale row } i \text { of } A \text { such that } A_{i, j}=1 \text {; }
$$

swap the rows i and r in A;
$T \longleftarrow$ multiplication table for row r of A;

```
                for r +1 \leqk<m do
```

 \(x \longleftarrow A_{k, j} ;\)
 $A_{k} \longleftarrow A_{k}+T_{x} ;$

$$
r \longleftarrow r+1 ;
$$

return r;
14 end

Outline

M4RI

Multiplication
Elimination
Projects
M4RIE
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

The idea

- Consider $\mathbb{F}_{2^{2}}$ with the primitive polynomial $f=x^{2}+x+1$.
- We want to compute $C=A B$.
- Rewrite A as $A_{0} x+A_{1}$ and B as $B_{0} x+B_{1}$.
- The product is

$$
C=A_{0} B_{0} x^{2}+\left(A_{0} B_{1}+A_{1} B_{0}\right) x+A_{1} B_{1} .
$$

- Reduction modulo f gives

$$
C=\left(A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}\right) x+A_{1} B_{1}+A_{0} B_{0} .
$$

- This last expression can be rewritten as

$$
C=\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)+A_{1} B_{1}\right) x+A_{1} B_{1}+A_{0} B_{0} .
$$

Thus this multiplication costs 3 multiplications and 4 adds over \mathbb{F}_{2}.

Outline

M4RI
Multiplication
Elimination
Projects
\section*{M4RIE}
Introduction
Newton-John Tables
Karatsuba Multiplication
Results

Results: Multiplication I

e	Magma $2.15-10$	GAP 4.4 .12	SW-NJ	SW-NJ/ M4RI	[Mon05]	Bitslice	Bitslice/
M4RI							
1	0.100 s	0.244 s	-	1	1	0.071 s	1.0
2	1.220 s	12.501 s	0.630 s	8.8	3	0.224 s	3.1
3	2.020 s	35.986 s	1.480 s	20.8	6	0.448 s	6.3
4	5.630 s	39.330 s	1.644 s	23.1	9	0.693 s	9.7
5	94.740 s	86.517 s	3.766 s	53.0	13	1.005 s	14.2
6	89.800 s	85.525 s	4.339 s	61.1	17	1.336 s	18.8
7	82.770 s	83.597 s	6.627 s	93.3	22	1.639 s	23.1
8	104.680 s	83.802 s	10.170 s	143.2	27	2.140 s	30.1

Table: Multiplication of $4,000 \times 4,000$ matrices over $\mathbb{F}_{2^{e}}$

Results: Multiplication II

Multiplication: Magma vs. Sage

Figure: 2.66 Ghz Intel i7, 4GB RAM

Results: Reduced Row Echelon Forms I

e	Magma	GAP	M4RIE
2	6.040s	162.658s	3.310s
3	14.470 s	442.522s	5.332s
4	60.370s	502.672s	6.330s
5	659.030s	N/A	10.511s
6	685.460s	N/A	13.078s
7	671.880s	N/A	17.285s
8	840.220s	N/A	20.247s
9	1630.380s	N/A	260.774s
10	1631.350s	N/A	291.298s

Table: Elimination of $10,000 \times 10,000$ matrices

Results: Reduced Row Echelon Forms II

Multiplication: Magma vs. Sage

Figure: 2.66 Ghz Intel i7, 4GB RAM

Fin
E. Vrlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the transitive closure of a directed graph.
Dokl. Akad. Nauk., 194(11), 1970.
(in Russian), English Translation in Soviet Math Dokl.
E. Peter L. Montgomery.

Five, six, and seven-term Karatsuba-like formulae.
IEEE Trans. on Computers, 53(3):362-369, 2005.
Volker Strassen.
Gaussian elimination is not optimal.
Nummerische Mathematik, 13:354-256, 1969.

[^0]:

