Upcoming p-adic functionality in FLINT

Sebastian Pancratz

Sage-FLINT Days, Warwick, 17-22 July 2011

Motivation

Motivation for the implementation.

- I need p-adic arithmetic for my own research code, which is largely based on FLINT.

Purpose of the talk.

- Present the already implemented functionality;
- Raise awareness for Sage Days 19-23 Feb 2012, San Diego;
- Ask for feedback.

Overview

- Comparison with Laurent series over \mathbf{F}_{p}
- Elements of \mathbf{Q}_{p}
- Functions on \mathbf{Q}_{p}
- Addition
- Multiplication
- Inversion
- Teichmüller lift
- Exponential
- Logarithm
- Polynomials over \mathbf{Q}_{p}

Comparison with Laurent series over \mathbf{F}_{p}

A Laurent series consists of the data $\left(m, n,\left(a_{m}, \ldots, a_{n}\right)\right)$ giving

$$
\sum_{i=m}^{n} a_{i} X^{i}
$$

that is,

$$
X^{m} \sum_{i=0}^{n-m} a_{i+m} X^{i}
$$

Given $f(X)$ and $g(X)$, we can compute their sum modulo X^{N} as

$$
f(X)+g(X)=\sum_{i=\min \left\{m_{f}, m_{g}\right\}}^{\min \left\{\max \left\{n_{f}, n_{g}\right\}, N-1\right\}}\left(a_{i}+b_{i}\right) X^{i}
$$

As coefficients are readily available, it is reasonable for operations to treat inputs as exact and require only the output precision N.

Elements of \mathbf{Q}_{p}

Consider,

$$
\begin{aligned}
& x=3+2 \times 5+1 \times 5^{2}+4 \times 5^{3} \\
& y=1+1 \times 5+4 \times 5^{2}+2 \times 5^{3}+3 \times 5^{4}
\end{aligned}
$$

Computing their sum modulo 5^{2},

$$
x+y=(3+1)+(2+1) 5 .
$$

But this is not what is happening in practical implementations. The p-adic digits are not readily available, and for $p \ll 2^{64}$ this is certainly not desirable anyway.

Elements of \mathbf{Q}_{p}

Instead, an element $x \neq 0$ is typically stored as $x=p^{v} u$ with $v=\operatorname{ord}_{p}(x) \in \mathbf{Z}$ and $u \in \mathbf{Z}$ with $p \nmid u$. In FLINT, we choose typedef struct \{ fmpz u;
long v;
\} padic_struct;
Remarks.

- Improved maintainability by having one data type; no special case depending on the size of p or p^{N};
- Eventually, $p=2$ should have a special case.

Functions on \mathbf{Q}_{p}

Philosophy.

- Treat input arguments as exact elements in \mathbf{Q}_{p} and return the ouput reduced modulo p^{N}.

For example, for the p-adic inversion function,

For $x \in \mathbf{Q}_{p}^{\times}$, we want

$$
\iota\left(\left(\iota^{-1} x\right)^{-1}\right) \equiv x^{-1} \quad\left(\bmod p^{N}\right)
$$

Benchmarks

We present some timings for arithmetic in $\mathbf{Q}_{p} \bmod p^{N}$ where $p=17, N=2^{i}$, $i=0, \ldots, 10$, comparing the three systems Magma (V2.17-13), Sage (4.8) and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93 GHz .

To avoid worrying about taking the same random sequences of elements, we instead fix elements $x=3^{3 N}$ and $y=5^{2 N}$ modulo p^{N}.

Addition

Signature.
void padic_add(z, x, y, ctx)
Contract.
Assumes that x and y are reduced modulo p^{N} and returns z in reduced form, too.

Algorithm.
Avoids expensive modulo operation.

Addition

Multiplication

Signature.

```
void padic_mul(z, x, y, ctx)
```

Contract.
Makes no assumptions on x, y but returns z reduced modulo p^{N}.

Multiplication

Inversion

Signature.
void padic_inv(z, x, ctx)
Contract.
Makes no assumptions on $x \neq 0$, returns z reduced modulo p^{N}.
Algorithm.
Hensel lifting.

Inversion

Teichmüller lift

Signature.
void padic_teichmuller(z, x, ctx)
Contract.
Assumes only that $\operatorname{ord}_{p}(x)=1$, returns z reduced modulo p^{N}.
Algorithm. Hensel lifting.

Teichmüller lift

Computes the Teichmüller lift of $x \bmod p^{N}$ to the required precision N.

Exponential

Signature.
int padic_exp(z, x, ctx)
Contract.
Assumes that $\exp _{p}(x)$ converges, that is, $\operatorname{ord}_{p}(x) \geq 2$ or $\operatorname{ord}_{p}(x) \geq 1$ as $p=2$ or $p>2$, respectively, and returns z reduced modulo p^{N}.

Algorithm.
Evaluates the truncated series

$$
\exp _{p}(x)=\sum_{i=0}^{m} \frac{x^{i}}{i!}
$$

over \mathbf{Z}_{p} by multiplying through by m !, hence requiring only one p-adic inversion.

Exponential

Computes the exponential of $17^{2} \times y$ to the required precision N.

Logarithm

Signature.

```
int padic_log(z, x, ctx)
```

Contract.
Assumes that $\log _{p}(x)$ converges, that is, $\operatorname{ord}_{p}(x-1) \geq 2$ or $\operatorname{ord}_{p}(x-1) \geq 1$ as $p=2$ or $p>2$, respectively, and returns z reduced modulo p^{N}.
Algorithm.
Evaluates the truncated series

$$
\log _{p}(x)=\sum_{i=1}^{m}(-1)^{i-1} \frac{(x-1)^{i}}{i}
$$

over \mathbf{Z}_{p} by inverting i at each step using a precomputed Hensel lifting structure.

Logarithm

Computes the logarithm of $1-17^{2} y$ to the required precision N.

Other functions on \mathbf{Q}_{p}

Other functions include:

- Subtraction
- Negation
- Powers
- Inversion (with precomputed lifting structure)
- Division
- Square root

Polynomials over \mathbf{Q}_{p}

We represent a non-zero polynomial $f(X) \in \mathbf{Q}_{p}[X]$ as

$$
f(X)=p^{v}\left(a_{0}+a_{1} X+\cdots+a_{n} X^{n}\right)
$$

where $a_{0}, \ldots, a_{n} \in \mathbf{Z}$ and, for at least one i, p does not divide a_{i}.
Remarks.

- Allows for transfer of many problems over \mathbf{Q}_{p} to $\mathbf{Z} /\left(p^{N}\right)$, where fast implementations are available.
- Similar to the approach chosen over Q in FLINT (and Sage), see trac ticket \#4000.

Polynomials over \mathbf{Q}_{p}

Functionality available.

- Conversions to polynomials over \mathbf{Z} and \mathbf{Q}
- Coefficient manipulation
- Addition, subtraction, negation
- Scalar multiplication
- Multiplication
- Powers
- Series inversion
- Derivative
- Evaluation
- Composition

