Upcoming p-adic functionality in FLINT

Sebastian Pancratz

Sage-FLINT Days, Warwick, 17-22 July 2011



Motivation
Motivation for the implementation.

» | need p-adic arithmetic for my own research code, which is largely based
on FLINT.

Purpose of the talk.

» Present the already implemented functionality;
» Raise awareness for Sage Days 19-23 Feb 2012, San Diego;
» Ask for feedback.



Overview

Comparison with Laurent series over F,,
Elements of Q,,

Functions on Q,,

Addition

Multiplication

Inversion

Teichmiiller lift

Exponential

Logarithm

vV V. Y V. VY VYV VvV VY

Polynomials over Q,



Comparison with Laurent series over F,

A Laurent series consists of the data (m, n, (am, ..., a,)) giving

n
E aiX’
i=m

that is,

n—m

X" Z Giam X°.
1=0

Given f(X) and g(X), we can compute their sum modulo X" as

min{max{ns,ny},N—1} ,
f(X)+9(X) = > (a; + b)) X"

i=min{ms,mg}

As coefficients are readily available, it is reasonable for operations to treat
inputs as exact and require only the output precision N.



Elements of Q,

Consider,

T=34+2x5+1x5%+4x53
y=14+1x5+4x5"+2x5 +3x5*

Computing their sum modulo 52,

z+y=B+1)+(2+1)5.

But this is not what is happening in practical implementations. The p-adic
digits are not readily available, and for p < 24 this is certainly not desirable
anyway.



Elements of Q,

Instead, an element = # 0 is typically stored as x = p”u with
v=ord,(z) € Z and u € Z with p { u. In FLINT, we choose

typedef struct {
fmpz u;
long v;

} padic_struct;

Remarks.

» Improved maintainability by having one data type; no special case
depending on the size of p or p™;

» Eventually, p = 2 should have a special case.



Functions on Q,
Philosophy.

> Treat input arguments as exact elements in Q,, and return the ouput
reduced modulo p™.

For example, for the p-adic inversion function,

Q(_L> Qp

(—)ll l(—)1

Q(—L> Qp
For z € QX, we want

() ) =27t (mod p™).



Benchmarks

We present some timings for arithmetic in Q, mod p” where p = 17, N = 21,
i =0,...,10, comparing the three systems Magma (V2.17-13), Sage (4.8)
and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93GHz.

To avoid worrying about taking the same random sequences of elements, we
instead fix elements z = 33" and y = 52" modulo p?.



Addition

Signature.
void padic_add(z, x, y, ctx)

Contract.
Assumes that z and y are reduced modulo p” and returns z in reduced form,
too.

Algorithm.
Avoids expensive modulo operation.



Addition

-Sage
-Magma
—FLINT




Multiplication

Signature.
void padic_mul(z, x, y, ctx)

Contract.
Makes no assumptions on z, y but returns z reduced modulo p¥.



Multiplication

ns
20000

~Sage
-Magma
—FLINT

15000 - !

10000

5000




Inversion

Signature.
void padic_inv(z, x, ctx)

Contract.
Makes no assumptions on z # 0, returns z reduced modulo p*.

Algorithm.
Hensel lifting.



Inversion

1265 _sage
-Magma
—FLINT
I
{




Teichmiller lift

Signature.
void padic_teichmuller(z, x, ctx)

Contract.
Assumes only that ord,(z) = 1, returns z reduced modulo p™.

Algorithm.
Hensel lifting.



Teichmiller lift

Computes the Teichmiiller lift of 2 mod p" to the required precision N.

-Sage
-Magma
—FLINT

4000F

3000 |

2000

1000 . ’

i
10

N
IS
e
@



Exponential

Signature.
int padic_exp(z, x, ctx)

Contract.
Assumes that exp,, () converges, that is, ord,(z) > 2 or ord,(z) > 1 as
p =2 or p > 2, respectively, and returns z reduced modulo p¥.

Algorithm.
Evaluates the truncated series

m l’i
epr(I) = Z ?
i=0

over Z, by multiplying through by m!, hence requiring only one p-adic
inversion.



of 172 x y to the required precision N

Exponential
Computes the exponential
|
-Sage i
-Magma i
150| —FLINT '
1
L}
[}
L
'i
100
1
1
1
l
K
50 /’
3 s s 1'0




Logarithm

Signature.
int padic_log(z, x, ctx)

Contract.

Assumes that log, (z) converges, that is, ord,(z — 1) > 2 or ord,(z — 1) > 1
as p = 2 or p > 2, respectively, and returns z reduced modulo p¥.
Algorithm.

Evaluates the truncated series

m

log () = 3 (~1yi-1 £

7
=1

over Zj, by inverting 7 at each step using a precomputed Hensel lifting
structure.



Logarithm

Computes the logarithm of 1 — 172y to the required precision V.

—Sage
2500) -Magma
—FLINT
2000
1500 |
1000 -
500 -
" " - e i
2 4 6 8 10




Other functions on Q,
Other functions include:

» Subtraction
Negation

Powers

>
>
> Inversion (with precomputed lifting structure)
» Division

>

Square root



Polynomials over Q,,

We represent a non-zero polynomial f(X) € Q,[X] as
fX)=p"(a0+a X+ +a,X")

where ag, ..., a, € Z and, for at least one i, p does not divide a;.
Remarks.
» Allows for transfer of many problems over Q,, to Z/(p"), where fast
implementations are available.

» Similar to the approach chosen over Q in FLINT (and Sage), see trac
ticket #4000.



Polynomials over Q,,
Functionality available.

Conversions to polynomials over Z and Q
Coefficient manipulation

Addition, subtraction, negation

Scalar multiplication

Multiplication

Powers

Series inversion

Derivative

Evaluation

YV V. vV YV VY VvV VvV VvYY

Composition



