
Upcoming p-adic functionality in FLINT

Sebastian Pancratz

Sage-FLINT Days, Warwick, 17–22 July 2011



Motivation

Motivation for the implementation.

I I need p-adic arithmetic for my own research code, which is largely based
on FLINT.

Purpose of the talk.

I Present the already implemented functionality;

I Raise awareness for Sage Days 19–23 Feb 2012, San Diego;

I Ask for feedback.



Overview
I Comparison with Laurent series over Fp

I Elements of Qp

I Functions on Qp

I Addition

I Multiplication

I Inversion

I Teichmüller lift

I Exponential

I Logarithm

I Polynomials over Qp



Comparison with Laurent series over Fp

A Laurent series consists of the data (m,n, (am , . . . , an)) giving

n∑
i=m

aiX
i

that is,

Xm
n−m∑
i=0

ai+mX i .

Given f (X ) and g(X ), we can compute their sum modulo XN as

f (X ) + g(X ) =

min{max{nf ,ng},N−1}∑
i=min{mf ,mg}

(ai + bi)X
i

As coefficients are readily available, it is reasonable for operations to treat
inputs as exact and require only the output precision N .



Elements of Qp

Consider,

x = 3 + 2× 5 + 1× 52 + 4× 53

y = 1 + 1× 5 + 4× 52 + 2× 53 + 3× 54

Computing their sum modulo 52,

x + y = (3 + 1) + (2 + 1)5.

But this is not what is happening in practical implementations. The p-adic
digits are not readily available, and for p � 264 this is certainly not desirable
anyway.



Elements of Qp

Instead, an element x 6= 0 is typically stored as x = pvu with
v = ordp(x ) ∈ Z and u ∈ Z with p - u. In FLINT, we choose

typedef struct {

fmpz u;

long v;

} padic_struct;

Remarks.

I Improved maintainability by having one data type; no special case
depending on the size of p or pN ;

I Eventually, p = 2 should have a special case.



Functions on Qp

Philosophy.

I Treat input arguments as exact elements in Qp and return the ouput
reduced modulo pN .

For example, for the p-adic inversion function,

Q � � ι //

(−)−1

��

Qp

(−)−1

��
Q � �

ι
// Qp

For x ∈ Q×p , we want

ι
(
(ι−1x )−1

)
≡ x−1 (mod pN ).



Benchmarks

We present some timings for arithmetic in Qp mod pN where p = 17, N = 2i ,
i = 0, . . . , 10, comparing the three systems Magma (V2.17-13), Sage (4.8)
and FLINT (2.3) on a machine with Intel Xeon CPUs running at 2.93GHz.

To avoid worrying about taking the same random sequences of elements, we
instead fix elements x = 33N and y = 52N modulo pN .



Addition

Signature.
void padic_add(z, x, y, ctx)

Contract.
Assumes that x and y are reduced modulo pN and returns z in reduced form,
too.

Algorithm.
Avoids expensive modulo operation.



Addition



Multiplication

Signature.
void padic_mul(z, x, y, ctx)

Contract.
Makes no assumptions on x , y but returns z reduced modulo pN .



Multiplication



Inversion

Signature.
void padic_inv(z, x, ctx)

Contract.
Makes no assumptions on x 6= 0, returns z reduced modulo pN .

Algorithm.
Hensel lifting.



Inversion



Teichmüller lift

Signature.
void padic_teichmuller(z, x, ctx)

Contract.
Assumes only that ordp(x ) = 1, returns z reduced modulo pN .

Algorithm.
Hensel lifting.



Teichmüller lift

Computes the Teichmüller lift of x mod pN to the required precision N .



Exponential

Signature.
int padic_exp(z, x, ctx)

Contract.
Assumes that expp(x ) converges, that is, ordp(x ) ≥ 2 or ordp(x ) ≥ 1 as

p = 2 or p > 2, respectively, and returns z reduced modulo pN .

Algorithm.
Evaluates the truncated series

expp(x ) =

m∑
i=0

x i

i !

over Zp by multiplying through by m!, hence requiring only one p-adic
inversion.



Exponential

Computes the exponential of 172 × y to the required precision N .



Logarithm

Signature.
int padic_log(z, x, ctx)

Contract.
Assumes that logp(x ) converges, that is, ordp(x − 1) ≥ 2 or ordp(x − 1) ≥ 1

as p = 2 or p > 2, respectively, and returns z reduced modulo pN .

Algorithm.
Evaluates the truncated series

logp(x ) =

m∑
i=1

(−1)i−1 (x − 1)i

i

over Zp by inverting i at each step using a precomputed Hensel lifting
structure.



Logarithm

Computes the logarithm of 1− 172y to the required precision N .



Other functions on Qp

Other functions include:

I Subtraction

I Negation

I Powers

I Inversion (with precomputed lifting structure)

I Division

I Square root



Polynomials over Qp

We represent a non-zero polynomial f (X ) ∈ Qp [X ] as

f (X ) = pv
(
a0 + a1X + · · ·+ anX

n
)

where a0, . . . , an ∈ Z and, for at least one i , p does not divide ai .

Remarks.

I Allows for transfer of many problems over Qp to Z/(pN ), where fast
implementations are available.

I Similar to the approach chosen over Q in FLINT (and Sage), see trac
ticket #4000.



Polynomials over Qp

Functionality available.

I Conversions to polynomials over Z and Q

I Coefficient manipulation

I Addition, subtraction, negation

I Scalar multiplication

I Multiplication

I Powers

I Series inversion

I Derivative

I Evaluation

I Composition


