Differences between revisions 4 and 5
Revision 4 as of 2010-01-12 03:45:10
Size: 4543
Editor: Minh Nguyen
Comment: summarize #6583
Revision 5 as of 2010-01-12 04:13:16
Size: 7889
Editor: Minh Nguyen
Comment: summarize #6887
Deletions are marked like this. Additions are marked like this.
Line 64: Line 64:
 * [[http://trac.sagemath.org/sage_trac/ticket/6887 | #6887]] (John Cremona, Jenny Cooley)  * More functions for elliptic curve isogenies [[http://trac.sagemath.org/sage_trac/ticket/6887 | #6887]] (John Cremona, Jenny Cooley) --- Code for constructing elliptic curve isogenies already existed in Sage 4.1.1. The enhancements here include:
  * For `l=2,3,5,7,13` over any field, find all `l`-isogenies of a given elliptic curve. (These are the `l` for which `X_0(l)` has genus 0).
  * Similarly for the remaining `l` for which `l`-isogenies exist over `QQ`.
  * Given an elliptic curve over `QQ`, find the whole isogeny class in a robust manner.
  * Testing if two curves are isogenous at least over `QQ`.
 The relevant use interface method is `isogenies_prime_degree()` in the class `EllipticCurve_field` of the module `sage/schemes/elliptic_curves/ell_field.py`. Here are some examples showing `isogenies_prime_degree()` in action. Examples over finite fields:
 {{{
sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
sage: E.isogenies_prime_degree()
[Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
sage: E.isogenies_prime_degree(13)
[Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
 }}}
 Examples over number fields (other than `QQ`):
 {{{
sage: QQroot2.<e> = NumberField(x^2 - 2)
sage: E = EllipticCurve(QQroot2, [1,0,1,4,-6])
sage: E.isogenies_prime_degree(2)
[Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2]
sage: E.isogenies_prime_degree(3)
[Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-128/3)*x + 5662/27 over Number Field in e with defining polynomial x^2 - 2]
 }}}

Sage 4.3.1 Release Tour

Major features

  • Substantial work towards a complete SPARC Solaris 10 port. This is due to the hard work of David Kirkby. The relevant tickets include #6595, #7138, #7162, #7505, #7817.

  • We're moving closer towards a FreeBSD port, thanks to the work of Peter Jeremy at ticket #7825.

Basic arithmetics

  • Implement conjugate() for RealDoubleElement #7834 (Dag Sverre Seljebotn) --- New method conjugate() in the class RealDoubleElement of the module sage/rings/real_double.pyx for returning the complex conjugate of a real number. This is consistent with conjugate() methods in ZZ and RR. For example,

    sage: ZZ(5).conjugate()
    5
    sage: RR(5).conjugate()
    5.00000000000000
    sage: RDF(5).conjugate()
    5.0

Combinatorics

  • #7754 (Nicolas M. Thiéry)

Elliptic curves

  • Two-isogeny descent over QQ natively using ratpoints #6583 (Robert Miller) --- New module sage/schemes/elliptic_curves/descent_two_isogeny.pyx for descent on elliptic curves over QQ with a 2-isogeny. The relevant user interface function is two_descent_by_two_isogeny() that takes an elliptic curve E with a two-isogeny phi : E --> E' and dual isogeny phi', runs a two-isogeny descent on E, and returns n1, n2, n1' and n2'. Here, n1 is the number of quartic covers found with a rational point and n2 is the number which are ELS. Here are some examples illustrating the use of two_descent_by_two_isogeny():

    sage: from sage.schemes.elliptic_curves.descent_two_isogeny import two_descent_by_two_isogeny
    sage: E = EllipticCurve("14a")
    sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
    sage: log(n1, 2) + log(n1_prime, 2) - 2  # the rank
    0
    sage: E = EllipticCurve("65a")
    sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
    sage: log(n1, 2) + log(n1_prime, 2) - 2  # the rank
    1
    sage: E = EllipticCurve("1088j1")
    sage: n1, n2, n1_prime, n2_prime = two_descent_by_two_isogeny(E)
    sage: log(n1, 2) + log(n1_prime, 2) - 2  # the rank
    2

    You could also ask two_descent_by_two_isogeny() to be verbose in its computation:

    sage: E = EllipticCurve("14a")
    sage: two_descent_by_two_isogeny(E, verbosity=1)
    2-isogeny
    Results:
    2 <= #E(Q)/phi'(E'(Q)) <= 2
    2 <= #E'(Q)/phi(E(Q)) <= 2
    #Sel^(phi')(E'/Q) = 2
    #Sel^(phi)(E/Q) = 2
    1 <= #Sha(E'/Q)[phi'] <= 1
    1 <= #Sha(E/Q)[phi] <= 1
    1 <= #Sha(E/Q)[2], #Sha(E'/Q)[2] <= 1
    0 <= rank of E(Q) = rank of E'(Q) <= 0
    (2, 2, 2, 2)
  • More functions for elliptic curve isogenies #6887 (John Cremona, Jenny Cooley) --- Code for constructing elliptic curve isogenies already existed in Sage 4.1.1. The enhancements here include:

    • For l=2,3,5,7,13 over any field, find all l-isogenies of a given elliptic curve. (These are the l for which X_0(l) has genus 0).

    • Similarly for the remaining l for which l-isogenies exist over QQ.

    • Given an elliptic curve over QQ, find the whole isogeny class in a robust manner.

    • Testing if two curves are isogenous at least over QQ.

    The relevant use interface method is isogenies_prime_degree() in the class EllipticCurve_field of the module sage/schemes/elliptic_curves/ell_field.py. Here are some examples showing isogenies_prime_degree() in action. Examples over finite fields:

    sage: E = EllipticCurve(GF(next_prime(1000000)), [7,8])
    sage: E.isogenies_prime_degree()
    [Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 970389*x + 794257 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 29783*x + 206196 over Finite Field of size 1000003, Isogeny of degree 2 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 999960*x + 78 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]
    sage: E.isogenies_prime_degree(13)
    [Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 878063*x + 845666 over Finite Field of size 1000003, Isogeny of degree 13 from Elliptic Curve defined by y^2 = x^3 + 7*x + 8 over Finite Field of size 1000003 to Elliptic Curve defined by y^2 = x^3 + 375648*x + 342776 over Finite Field of size 1000003]

    Examples over number fields (other than QQ):

    sage: QQroot2.<e> = NumberField(x^2 - 2)
    sage: E = EllipticCurve(QQroot2, [1,0,1,4,-6])
    sage: E.isogenies_prime_degree(2)
    [Isogeny of degree 2 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-36)*x + (-70) over Number Field in e with defining polynomial x^2 - 2]
    sage: E.isogenies_prime_degree(3)
    [Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-171)*x + (-874) over Number Field in e with defining polynomial x^2 - 2, Isogeny of degree 3 from Elliptic Curve defined by y^2 + x*y + y = x^3 + 4*x + (-6) over Number Field in e with defining polynomial x^2 - 2 to Elliptic Curve defined by y^2 + x*y + y = x^3 + (-128/3)*x + 5662/27 over Number Field in e with defining polynomial x^2 - 2]

Graph theory

  • #1321 (Radoslav Kirov, Mitesh Patel)

  • #7724 (Nathann Cohen, Yann Laigle-Chapuy)

  • #7770 (Rob Beezer)

Linear algebra

  • #5174 (John Palmieri)

  • #7728 (Dag Sverre Seljebotn)

Miscellaneous

  • #6820 (John Palmieri, Mitesh Patel)

  • #7482 (William Stein)

  • #7514 (William Stein)

Packages

ReleaseTours/sage-4.3.1 (last edited 2010-01-25 14:14:58 by nathann.cohen)