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Number Fields

Recall that a number field K is a finite extension of Q. Its elements
are algebraic numbers. Examples :

K = Q(
√

2) K = Q(
√

5) K = Q(i), K = Q(e2iπ/5) .

These are abelian extensions (see below). Or

K = Q(α) with α3 − α− 1 = 0 .

This is nonabelian.

The set of all algebraic integers (roots of monic polynomials in Z[X ])
in K forms a ring (of course an integral domain), denoted ZK and also
called the maximal order of K . Its essential property is that it is a
Dedekind domain : existence and essentially unique factorization of
an ideal as a power product of prime ideals. NOT TRUE for
suborders, e.g., Z[

√
5] is not Dedekind.
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Field-Theoretic Invariants of a Number Field I

A nf first has invariants which are mainly linked to the field structure,
and not so much on the ring structure of ZK . Its most important are :
• Its degree n = [K : Q], the dimension of K as a Q-vector space.
• Its signature (r1, r2) with r1 + 2r2 = n, number of real and half the
number of complex embeddings of K .
• The Galois group G of its Galois closure (abuse : call the Galois
group even if K/Q not Galois), considered as a permutation group on
the roots of a defining polynomial for G, hence with an embedding
into the symmetric group Sn, a permutation representation. It will be a
transitive subgroup.
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Field-Theoretic Invariants of a Number Field II

Conjecture (Inverse Galois Problem). For any transitive subgroup G

of Sn there exists a number field K of degree n over Q with Galois
group (of Galois closure) isomorphic to G.
In fact conjecture infinitely many.
Note that if we allow the base field to vary (not Q) the result is trivially
true.
Sample results :
• Equivalent to same with added condition totally real r2 = 0
(J.-P. Serre).
• True for all transitive subgroups of Sn for n ≤ 15 (Klüners–Malle).
• True for 25 of the 26 sporadic simple groups, with the exception of
the Mathieu group M23 (realizable over Q(i) and Q(

√
−23)).

• However, absolutely not known for all the infinite families of simple
groups, except for instance for An.
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Ring-Theoretic Invariants of a Number Field I

There are many specifically ring-theoretic invariants of a nf. Its most
important are :
• Its discriminant d(K ) (know that sign(d(K)) = (−1)r2 and
d(K ) ≡ 0, 1 (mod 4) by a theorem of Stickelberger). This is a
reasonable measure of the size of number field, but other measures
can be used. Note that p | d(K ) iff p ramifies in K/Q, so weak
measure of ramification.
• The prime ideals, and the decomposition of prime numbers as
power products of prime ideals.
• All this is encoded in the Dedekind zeta function ζK (s) of K , defined
by

ζK (s) =
�

a

1
N(a)s

=
�

p

1
1 −N(p)−s

,

the sum on (nonzero) integral ideals of K , the product on (nonzero)
prime ideals. Essential property : functional equation s �→ 1 − s

(Hecke, Tate).
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Ring-Theoretic Invariants of a Number Field II

Slightly more subtle invariants are :
• The class group Cl(K ) and its cardinality the class number
h(K ) = |Cl(K )|, which measures the nonuniqueness of
decomposition into prime elements.
• The group of units U(K ) (invertible elements of ZK ), and its
“logarithmic volume” R(K ), called the regulator of K .

The Dedekind zeta function contains information about this : its
residue at s = 1 is an easy multiple of h(K )R(K ). Better expressed at
s = 0 :

ζK (s) ∼ −h(K )R(K )

w(K )
s

r1+r2−1 ,

where w(K ) = |U(K )tors| is the number of roots of unity in K ,
r1 + r2 − 1 rank of unit group.
However the product h(K )R(K ) makes it very difficult to separate
properties of the class group and the unit group.



6

Ring-Theoretic Invariants of a Number Field II

Slightly more subtle invariants are :
• The class group Cl(K ) and its cardinality the class number
h(K ) = |Cl(K )|, which measures the nonuniqueness of
decomposition into prime elements.
• The group of units U(K ) (invertible elements of ZK ), and its
“logarithmic volume” R(K ), called the regulator of K .

The Dedekind zeta function contains information about this : its
residue at s = 1 is an easy multiple of h(K )R(K ). Better expressed at
s = 0 :

ζK (s) ∼ −h(K )R(K )

w(K )
s

r1+r2−1 ,

where w(K ) = |U(K )tors| is the number of roots of unity in K ,
r1 + r2 − 1 rank of unit group.
However the product h(K )R(K ) makes it very difficult to separate
properties of the class group and the unit group.



7

Results and Conjectures I

Hermite : the set of isomorphism classes of nf of given discriminant D

is finite, equivalently the number N(X ) of iso. cl. of nf with |d(K )| ≤ X

is finite.

Conjecture : the cardinality of the set of iso. cl. of nf with given
d(K ) = D is O(|D|ε) for all ε > 0.
Trivial for quadratic fields, but not even known for cubic fields :
O(|D|1/2) easy, but Pierce, then Helfgott–Venkatesh who obtain
O(|D|0.442).

Minkowski : if K �= Q then |d(K )| > 1, and in fact |d(K )| > Cn with
n = [K : Q] for some C > 1, more precisely |d(K )| > C

r1
1 C

r2
2 with

C1 > 1, C2 > 1.
Minkowski used geometry of numbers. Best constants known by
analytic methods initiated by H. Stark, followed by A. Odlyzko and
several others. Assuming GRH, constants very close to optimal.
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Results and Conjectures II

Brauer–Siegel theorem : if n is fixed, then
log(h(K )R(K )) ∼ log(|d(K )|1/2) as |d(K )| → ∞. Thus, in a weak
sense h(K )R(K ) is of the order of |d(K )|1/2 (“joke proof ! ! ! ! !” : the
value of ζK (s)/ζ(s) at s = 1 is essentially h(K )R(K )/|d(K )|1/2, and
the Euler product giving the quotient shows that this is not large or
small).

Imaginary quadratic fields : R(K ) = 1, so only case where describes
behavior of h(K ) alone. Although it says
|d(K )|1/2−ε < h(K ) < |d(K )|1/2+ε, finding explicit lower bounds for
|d(K )| is difficult if GRH not assumed. For instance, class number 1
problem (show h(K ) ≥ 2 when |d(K )| > 163) difficult, only solved in
the 1960’s by Stark and Baker (important ideas of Heegner).

Without GRH, Lower bound tending to infinity with |d(K )| (and quite
weak : order of log(|d(K )|) instead of the expected |d(K )|1/2−ε) had
to wait for Goldfeld, Gross–Zagier using the L-function of an elliptic
curve of conductor 5077 and rank 3.
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Results and Conjectures III

Recall h(K )R(K ) of the order of |d(K )|1/2. Excluding imaginary
quadratic fields, general belief is that h(K ) is very small (order
|d(K )|ε) and R(K ) therefore very large (order |d(K )|1/2−ε). However
not even known infinitely many class number 1 :
Conjectures

1 Exists infinitely many iso. cla. nf of class number 1 (unique
factorization into prime elements).

2 Exists infinitely many which are Euclidean for the norm.
3 Exists infinitely many real quadratic fields K = Q(

√
p)

(necessarily of prime discriminant) with class number 1.
4 (C.–Lenstra) In fact, positive proportion of such fields, approx.

0.75446 · · · (hence many !).
5 If r1 + r2 − 1 ≥ 3, most nf should be norm-Euclidean (and a

fortiori of class number 1), the proportion tending to 1 as
r1 + r2 − 1 tends to infinity.
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Results and Conjectures IV

Main problem : finding a lower bound for the regulator. Example for
real quadratics : one can construct an infinite family of Q(

√
D) with

R(D) > C log(D)3, C > 0. Unknown if true with C log(D)4 (recall
expect R(D) > |D|1/2−ε with probability 1).

In a different setting : can define p-adic regulator Rp(K ), a p-adic
number. Worse situation : not even known if nonzero, except if K

abelian (Leopoldt’s conjecture).
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Counting Number Fields I

Ordering of nf : usually by |d(K )|. But can also be by conductor
(when it exists) or by ramified primes. If G is a transitive subgroup of
Sn, notation

Nk ,n(G;X ) , Nn(G;X ); , Nr1,r2(G;X )

number of iso. cl. of nf (or number field extensions K/k ) of degree n

(or signature (r1, r2)) with Galois group (of Galois closure)
permutation-isomorphic to G.

Main problem : give estimates, or compute exactly. In small degree,
closely linked through elementary class field theory : estimates for the
class group Cl(K ), more precisely the 2-rank or 3-rank for instance.



11

Counting Number Fields I

Ordering of nf : usually by |d(K )|. But can also be by conductor
(when it exists) or by ramified primes. If G is a transitive subgroup of
Sn, notation

Nk ,n(G;X ) , Nn(G;X ); , Nr1,r2(G;X )

number of iso. cl. of nf (or number field extensions K/k ) of degree n

(or signature (r1, r2)) with Galois group (of Galois closure)
permutation-isomorphic to G.

Main problem : give estimates, or compute exactly. In small degree,
closely linked through elementary class field theory : estimates for the
class group Cl(K ), more precisely the 2-rank or 3-rank for instance.



12

Counting Number Fields II

Experimental checks : need two things :

1 Make complete tables of number fields, ordered by |d(K )|, for
given n, (r1, r2), and/or G.

2 Given K , compute its invariants d(K ), Cl(K ), R(K ) for instance.

The first problem is the most difficult : one does not even know the
number field of degree 10 with smallest |d(K )| ! ! ! (not sure if one
knows it for degree 9).
Trivial for n = 2, very efficient for n = 3 (K. Belabas), for n = 4 work of
M. Bhargava should also lead to an efficient method, which
apparently has not been implemented (and would also apply to
S5-fields), for 5 ≤ n ≤ 8 difficult, use Hunter’s theorem, very
inefficient (for imprimitive fields, i.e., with a nontrivial subfield,
everything much more efficient using relative methods).
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M. Bhargava should also lead to an efficient method, which
apparently has not been implemented (and would also apply to
S5-fields), for 5 ≤ n ≤ 8 difficult, use Hunter’s theorem, very
inefficient (for imprimitive fields, i.e., with a nontrivial subfield,
everything much more efficient using relative methods).
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Counting Number Fields III

The second goal, computing invariants, has now become
straightforward : d(K ) (or equivalently a Z-basis of the ring of
integers) computed using Zassenhaus’ round 4 algorithm, very
efficient, negligible time if d(K ) factored (no problem here).
For the more subtle invariants Cl(K ) and R(K ), work of
Hafner–McCurley, Buchmann, C.–Diaz y Diaz–Olivier has made this
also very efficient (degrees up to 40 or 50 for fields of reasonable
d(K )), and excellent implementations (requiring years of work) in the
usual packages Pari/GP, Sage (which is the Pari impl.), and
magma.
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Malle’s Conjecture

General conjecture due to G. Malle :
Conjecture

Nk ,n(G;X ) ∼ ck (G)X
a(G) log(X )bk (G)−1 ,

where a(G) = 1/i(G), i(G) ≥ 1 integer independent of k , bk (G) ≥ 1
integer, and ck (G) > 0 real.

Definition of i(G) easy :

i(G) = min
σ∈G\{1}

(n − |orbits of σ|) .

Examples : i(Sn) = 1, and if G abelian and � is smallest prime divisor
of |G| then i(G) = |G|(1 − 1/�).

Malle also gives definition of bk (G), but had to be corrected in certain
cases (counterexample of J. Klüners), done by S. Türkelli.
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General conjectures/results I

“folk” conjecture : Nk (X ) = O(X ), where all Galois groups and all
degrees are put together, and even Nk (X ) ∼ ck X for some ck > 0.
More precisely, for all n we have Nk ,n(X ) ∼ ck ,n X for some ck ,n > 0.
Implied by Malle’s conjecture.

By work that we will mention below, known to be true for n ≤ 4 (also
n = 5 ?). Elementary counting argument gives Nk (X ) = O(X (n+2)/4),
much too weak. Ellenberg–Venkatesh prove the following :

1 Nk ,n(X ) = Ok ,n(X
exp(C(log(n))1/2)) = Ok ,n,ε(X

nε
).

2 Nk ,n(Sn;X ) > ck ,n X 1/2+1/n2 (expect X 1 of course).
3 Nk ,n(Galois;X ) = O(X 3/8+ε), in particular Galois extensions are

negligible, as can be expected.
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Abelian Extensions I

Well understood and is one of the justifications of Malle’s conjecture.
Initially, many special cases : quadratic/Q easy, cyclic cubic/Q
H. Cohn, abelian quartic/Q Baily (several mistakes). General
abelian/Q treated by S. Mäki, cyclic/k of prime order treated by C.
and collaborators, cyclic/k by M. Taylor, general abelian/k by
D. Wright, using adelic techniques, but their “explicit” formula for
ck (G) is difficult (but not impossible) to compute in practice.

In 2008, M. Wood showed that by ordering abelian extensions by
conductor instead of discriminant (same for C�-extensions but not in
general) one obtains a completely explicit formula, including for
ck (G). Thus, the problem of abelian extensions can be considered as
completely solved.



16

Abelian Extensions I

Well understood and is one of the justifications of Malle’s conjecture.
Initially, many special cases : quadratic/Q easy, cyclic cubic/Q
H. Cohn, abelian quartic/Q Baily (several mistakes). General
abelian/Q treated by S. Mäki, cyclic/k of prime order treated by C.
and collaborators, cyclic/k by M. Taylor, general abelian/k by
D. Wright, using adelic techniques, but their “explicit” formula for
ck (G) is difficult (but not impossible) to compute in practice.

In 2008, M. Wood showed that by ordering abelian extensions by
conductor instead of discriminant (same for C�-extensions but not in
general) one obtains a completely explicit formula, including for
ck (G). Thus, the problem of abelian extensions can be considered as
completely solved.



17

Abelian Extensions II

Simplest examples over Q, for explicit constants (Euler products and
sums), computable to hundreds of decimal digits if desired :

N2(C2;X ) ∼ c(C2)X , N3(C3;X ) ∼ c(C3)X
1/2 ,

N4(C4;X ) = c(C4)X
1/2 + c

�(C4)X
1/3 + O(X 1/4+ε) ,

N4(V4;X ) = (c(V4) log2(X ) + c
�(V4) log(X ) + c

��(V4))X
1/2 + O(X 1/3+ε) ,

N5(C5;X ) ∼ c(C5)X
1/4 , N6(C6;X ) ∼ c(C6)X

1/3 ,

N7(C7;X ) ∼ c(C7)X
1/6 .

In addition, I mention the following simple result due to
Datskowsky–Wright and independently the author and collaborators :

Nk ,2(C2;X ) ∼ 1
2r2(k)

ζk (1)
ζk (2)

X

(by abuse, ζk (1) denotes the residue of ζk (s) at s = 1).
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Cases of medium difficulty I

• Quartic D4-extensions. This was completely solved over an
arbitrary k and with or without signature conditions by C.–Diaz y
Diaz–Olivier. Result is

Nk ,4(D4;X ) = ck (D4)X + O(X 1−α)

with an explicit α > 0 (α = 1/4 − ε if k = Q) and explicit ck (D4).
However, contrary to the abelian case (and Bhargava’s Sn cases
below), formula for ck (D4) slow convergence : for k = Q only 8
decimals.

Since Nk ,4(S4;X ) > c.X (see below), this shows that the proportion
of quartic extensions which are S4 is strictly less than 1 (contrary to
the cubic or quintic case for instance), in accordance with Malle’s
conjecture. In fact Malle proves that the proportion of degree n

Sn-extensions is stricly less than 1 if n is divisible by 4 or 6, and
conjectures that it is strictly less than 1 if and only if n is composite.
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Cases of medium difficulty II

A number of results for other groups are due to J. Klüners and
G. Malle. To my knowledge, the only results they have deals with the
weak Malle conjecture, i.e.

X
a(G)−ε < Nk ,n(G,X ) < X

a(G)+ε .

Thanks to these authors, such results are known for nilpotent groups
in their regular representation, for the wreath product of such a group
with C2, for the dihedral group D� (� prime) both for degree �
extensions and for the Galois degree 2� extensions (assuming
C.–Lenstra heuristics, otherwise weaker, use work of
Ellenberg–Venkatesh), for quaternion groups Q4�, for certain types of
�-groups, etc... In every case one uses the fact that these groups
have subgroups and one can use induction on simpler groups.



19

Cases of medium difficulty II

A number of results for other groups are due to J. Klüners and
G. Malle. To my knowledge, the only results they have deals with the
weak Malle conjecture, i.e.

X
a(G)−ε < Nk ,n(G,X ) < X

a(G)+ε .

Thanks to these authors, such results are known for nilpotent groups
in their regular representation, for the wreath product of such a group
with C2, for the dihedral group D� (� prime) both for degree �
extensions and for the Galois degree 2� extensions (assuming
C.–Lenstra heuristics, otherwise weaker, use work of
Ellenberg–Venkatesh), for quaternion groups Q4�, for certain types of
�-groups, etc... In every case one uses the fact that these groups
have subgroups and one can use induction on simpler groups.



20

Difficult Cases : n = 3, G = S3 I

Excluding the trivial cases n ≤ 2, the first difficult result was obtained
for n = 3, G = S3, and k = Q by Davenport–Heilbronn in 1969, using
the Delone–Fadeev correspondence between cubic fields and binary
cubic forms :

N3(S3;X ) ∼ c(S3)X , N(3,0)(S3;X ) ∼ c(S3)

4
X ,

N(1,1)(S3;X ) ∼ 3c(S3)

4
X , with

c(S3) =
1

3ζ(3)
.

Sketch of proof : (1) description of the D–F correspondence between
binary cubic forms and cubic rings. (2) description of nec. and suf.
local conditions for the image to be a maximal order. (3) compute the
local densities, count the forms, compute the product, prove the
theorem.
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Difficult Cases : n = 3, G = S3 II

Error terms : first error term by K. Belabas in 1999, first
power-saving error term by Belabas–Bhargava–Pomerance in 2005,
precise conjecture of D. Roberts that there exists a second main term
in X 5/6, finally proved in 2010 by Bhargava–Shankar–Tsimmerman
using techniques of Bhargava. Independently, T. Taniguchi and
F. Thorne using Shintani zeta functions found the best result to date :

N3(S3;X ) = c(S3)X + (1 +
√

3)c�(S3)X
5/6 + O(X 7/9+ε) ,

N3,0(S3;X ) =
c(S3)

4
X + c

�(S3)X
5/6 + O(X 7/9+ε) ,

N1,1(S3;X ) =
3c(S3)

4
X +

√
3c

�(S3)X
5/6 + O(X 7/9+ε) ,

where c(S3) = 1/(3ζ(3)) as above, and

c
�(S3) =

4
5

ζ(1/3)
Γ(2/3)3ζ(5/3)

,

as conjectured by Roberts.
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Difficult Cases : n = 3, G = S3 III

The case n = 3, G = S3, and general k is much harder : 20 years
later, fundamental work of Datskowsky–Wright in 1988 using adelic
techniques :

Nk ,3(S3;X ) ∼
�

2
3

�r1(k)−1 �1
6

�r2(k) ζk (1)
3ζk (3)

X .

Simpler methods : can also give precise asymptotics for the number
of S3-extensions with given quadratic resolvent field (C.–Morra). This
is also possible for the number of S4 or A4-extensions with given
cubic resolvent field, but unfortunately does not help for the total
number because of error terms (see below, however).
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Difficult Cases : n = 3, G = S4 I

Breakthrough by M. Bhargava in 2000, new methods for many
problems in the field. In this precise case : Delone–Fadeev
correspondence replaced by a correspondence between suitable
pairs of ternary quadratic forms (i.e., pencils of projective conics) and
maximal quartic rings.

This corresponds to a prehomogeneous vector space : rough count :
Ternary qf : 6 homogeneous parameters, pencil 12 = 2 × 6 projective
parameters. Group acting : GL3(C)× GL2(C) : the GL3 on ternary
quadratic forms, the GL2 on the pencil, condition determinant product
equals 1 for a total of 32 + 22 − 1 = 12 parameters, same number.
Expect orbits to be finite.

Proof then goes along same lines : study in detail the
correspondence, local conditions for maximal orders, compute local
densities, count the forms, prove theorem. Here there are additional
problems coming from the shape of the fundamental domain which
must be solved.
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Difficult Cases : n = 4, G = S4 II

Bhargava’s theorem :

N4(S4,X ) ∼ r4(S4)z(S4)X Nr1,r2(S4,X ) ∼ rr1,r2(S4)z(S4)X ,

where
z(S4) =

�

p≥2

�
1 +

1
p2 − 1

p3 − 1
p4

�
and

r4(S4) =
5
24

, r4,0(S4) =
1

48
, r2,1(S4) =

1
8
, r0,2(S4) =

1
16

.

Probably additional main term, perhaps X 23/24. Available numerical

data only up to 109 (Malle for totally real) far from sufficient.
Relative case treated by A. Yukie, but convergence problems remain.
Solved by Bhargava ?
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Difficult Cases : n = 5, G = S5

Also by Bhargava. Similar but more complicated, here a
40-dimensional space instead of a 12-dimensional one in the S4
case : quadruples of alternating 5-forms on the one hand, group
GL5(C)× GL4(C) plus the determinant condition on the other hand ,
for a total of 52 + 42 − 1 = 40 parameters, the same number once
again.

Bhargava’s theorem :

N5(S5,X ) ∼ r5(S5)z(S5)X Nr1,r2(S5,X ) ∼ rr1,r2(S5)z(S5)X ,

where
z(S5) =

�

p≥2

�
1 +

1
p2 − 1

p4 − 1
p5

�
and

r5(S5) =
13

120
, r5,0(S5) =

1
240

, r3,1(S5) =
1

24
, r1,2(S5) =

1
16

.
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Difficult Cases : n = 6, G = S3

The case of Galois sextic extensions with Galois group S3 has been
solved in 2008 independently by Belabas–Fouvry and
Bhargava–Wood.
In accordance with Malle’s conjecture, they prove the following :

N6(S3;X ) ∼ c(S3(6))X
1/3 with

c(S3(6)) =
1
3

�

p

cp

�
1 − 1

p

�

cp �=3 = 1 +
1
p
+

1
p4/3 and c3 = 1 +

1
3
+

1
35/3 +

1
37/3 .
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Difficult Cases : G = Sn, n ≥ 6

Unfortunately, there are no prehomogeneous v.s. to help us now. On
the other hand, one can still use the idea of local densities, and using
a mass formula of Serre counting étale extensions, M. Bhargava has
given a very convincing conjecture concerning Nn(Sn;X ) and
Nr1,r2(Sn;X ), which of course agrees with the known results for n ≤ 5.
For a number field k and a place v of k define sequences av (n) :

�

n≥1

av (n)T
n =






exp(T ) if v is complex,
exp(T + T 2/2) if v is real,
�

k≥1(1 − T k/q
k−1
v )−1 if v = p, with qv = Np .

Conjecture (Bhargava) :

Nk ,n(Sn;X ) ∼ ck (Sn)X , with

ck (Sn) =
ζk (1)

2

�

v

av (n)

�
1 − 1

qv

�
,

(if v is infinite set qv = ∞, in other words omit the factor 1 − 1/qv ).
Easy to modify to take into account signatures.
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Nk ,n(Sn;X ) ∼ ck (Sn)X , with

ck (Sn) =
ζk (1)

2

�

v

av (n)

�
1 − 1

qv

�
,

(if v is infinite set qv = ∞, in other words omit the factor 1 − 1/qv ).
Easy to modify to take into account signatures.
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Difficult Cases : other Galois groups

Note that as part of their beautiful 2010 ICM paper,
Ellenberg–Venkatesh give a number of heuristic arguments for a
precise conjecture for more general groups than Sn.
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Difficult Cases : n = 4, G = A4

Only remaining Galois group for quartic extensions. Conjecture due
to the author and coll., a special case of Malle’s, is :
Conjecture : exists c > 0 such that

Nk ,4(A4;X ) ∼ c X
1/2 log(X )bk−1 ,

with bk = 2 if ζ3 /∈ k , bk = 3 if ζ3 ∈ k (ζ3 primitive cube root of 1).

Best result due to S. Wong : Nk ,4(A4;X ) = O(X 5/6+ε) (exponent
reduced to 2/3 if assumes ABC, BSD, GRH).
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Exact Numerical Computation of Nk ,n(G;X ) I

One may also want to count exactly the quantities Nk ,n(G;X ), either
to test the validity or the plausibility of the asymptotics (it is incredibly
easy to make a mistake in the formulas), as a challenge and/or
attempt at record-breaking. Four ways that I know of :

• For abelian extensions, the use of Kummer theory, or
equivalently of class field theory. This allows the computations to
go very far (see below).

• For A4 and D4-extensions, the use of the work of the author and
collaborators also leads to a very efficient algorithm, almost as
efficient as in the abelian case, since one can still use Kummer
theory on relative extensions.
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Exact Numerical Computation of Nk ,n(G;X ) II

• For Sn-extensions for n = 3, 4, and 5, the use of the explicit
correspondences leading to the theorems of
Davenport–Heilbronn and Bhargava. This leads to quasi-linear
algorithms, and has been beautifully done by K. Belabas for
n = 3. Although everybody speaks about doing it, it should be
done for n = 4 (and n = 5), since clearly it will work.

• For other extensions, the very inefficient use of Hunter’s theorem,
together with a relative generalization due to J. Martinet.
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Exact Numerical Computation of Nk ,n(G;X ) III

The computations are done separating different signatures, although
of course the splitting behavior of other primes could be taken into
account. Here are some of the limits attained a few years ago for
fields of degree up to 4 (easy to go higher if desired) :

group : C2 C3 S3 C4 V4 D4 A4 S4
limit : 1025 1037 1013 1032 1036 1017 1016 109∗

(*) (totally real only).

Relative case :

1 As usual, abelian extensions easy.
2 Cubic S3-extensions of quadratic fields tabulated by A. Morra.
3 Quartic extensions of quadratic fields tabulated by M. Olivier.
4 A few other cases.
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The C.–Lenstra Heuristics I

Closely linked to the problem of counting nf in small degree are the
problems of asymptotics of class groups and regulators. H. Lenstra
and the author, and later J. Martinet, have formulated a number of
general conjectures on this.

Basic idea : weigh finite abelian group proportionally to 1/|Aut(G)|.
Then the odd part of class groups of imaginary quadratic fields
should behave like such a “random” abelian group. The odd part of
class groups of real quadratic fields should behave like G/�g�, G

being weighed as before and �g� cyclic subgroup generated by a
random g ∈ G.

Exist generalizations to higher degree fields (C.–Lenstra,
C.–Martinet), but need to be careful about certain prime numbers.
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The C–Lenstra Heuristics II

Some consequences of the heuristic assumptions.
• For imaginary quadratic fields :

1 For p ≥ 3 prime, p | h(K ) with probability close to 1/p + 1/p2

(0.44 · · · for p = 3, much larger than expected 1/3).
2 For p ≥ 3 prime, the average of prp(Cl(K )) should be always equal

to 2 (rp(Cl(K )) is the p-rank of Cl(K )). The Davenport–Heilbronn
theorem above shows that this is a theorem for p = 3. To prove it
for p = 5 would require asymptotics for D5 quintic number fields.
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The C–Lenstra Heuristics III

• For real quadratic fields :

1 The proportion of K = Q(
√

p) with p ≡ 1 (mod 4) prime with
class number 1 should be 0.75446 · · · (recall that one does not
even know if infinitely many !).

2 We have �

p≤x , p≡1 (mod 4)

h(p) ∼ x

8
,

also conjectured by C. Hooley using completely different ideas.
3 For p ≥ 3 prime, the average of prp(Cl(K )) should be 1 + 1/p.

Again a theorem for p = 3 by Davenport–Heilbronn.
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The C–Lenstra Heuristics IV

• For noncyclic cubic fields :
If p �= 3 is prime (including p = 2), the average of prp(Cl(K )) should be
1 + 1/p for complex cubic fields, and 1 + 1/p2 for totally real cubic
fields. This is now a theorem of Bhargava for p = 2.

• For cyclic cubic fields :
Recall in this case rp(Cl(K )) always even. Initial conjectures of
C.–Martinet : the average of prp(Cl(K )) should be

�
(1 + 1/p)2 if p ≡ 1 (mod 3) ,
1 + 1/p2 if p ≡ 2 (mod 3) .
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The C–Lenstra Heuristics V

On the basis of additional heuristics and extensive convincing
numerical evidence, following remarks of H. Lenstra, G. Malle has
suggested that the existence of roots of unity in the base field will
change the heuristic predictions (hence always for p = 2).

1 In the noncyclic cubic case, it changes the expected predictions
for p = 2, but does not change the prediction for the first moment
prp(Cl(K )) (which is correct by Bhargava), but only for the higher
moments pnrp(Cl(K )).

2 In the cyclic cubic case, his prediction is that the average of
2r2(Cl(K )) should be 3/2 instead of 5/4 as predicted by
C.–Martinet. This is extremely close to experimental evidence.
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