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Some background in random matrix theory:
In his The Classical Groups, Weyl worked out Haar
measure for class functions on the classical compact
groups: U(N), and the orthogonal and symplectic groups.
Let A€ U(N) be a unit_ary matrix, AA* = [, with
eigenvalues €1, ... e, 0 < 0; < 2.
Let f(A) = f(64,...,0n) be a class function on U(N), only
depending on the conjugacy class that A belongs to, i.e. a
symmetric function on the eigenangles 6.
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Haar measure for class functions on U(N) is given in terms
of its joint probability density function for eigenangles:

<f(A)>U(N) =

# i i0; |2
N!(ZW)N ~/[0,27r]N f(61,...,0n) H ‘e e " dby ...doy,

1<j<k<N

f integrable.
The statistics that we will consider:

Eigenangle densities and correlations.
Moments of characteristic polynomials.
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Another formula for this measure.
Define
Sn(0) = sin(N6/2)/sin(6/2),

and take Sy(0) = N. Then

[T lexp(ite) - exp(it))|* = det (Sn(6k - 6))).
1<j<k<N X

Derive this formula by expressing the l.h.s. as a product of two
Vandermonde determinants:

det (exp(i(k — 1)6;)) det (exp(—i(k — 1)6)).

multiplying the two matrices, summing the geometric series,
and simplifying.
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r-point density.

We would like to know, on average over U(N), the number of
eigenangles that lie in an interval [a, b], and more generally, the
density of r-tuples of eigenangles lying in a ‘box’. Let r be a
positive integer, and f : [0,27]" — R an integrable function. For
A € U(N) with eigenangles 0 < 64,...,6n < 27, we define the
r-point density, weighted by f, to be the sum over all distinct

r-tuples:
S f(b,....6;).

Joeidr
1< distinct <N

The sum is over r! (';’) ways to select our r-tuples of distinct 6’s
from the N eigenangles.
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The main result for U(N), due to Gaudin and Mehta, is:
Theorem: Let f : [0,27]" — R be an integrable function. Then

< > f(e,1,...,0,,)>
{c e j,SN

— distinct

U(N)
equals the following r-dimensional integral:

1
@) Jozny #(01, ..., 0r) det(Sn(0k — 6;))d04 . .. 6.
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For r =1 and integrable f : [0,27] — R, the theorem reads

N 2
<Zf(9,)> - 2’\; / £(6)do,
J=1 U(N) 0

i.e. uniform density on [0, 2x]. Here we have used Sy(0) = N.
However, if r = 2, then pairs of eigenangles are not uniformly
dense in the box [0, 27]?. For integrable f : [0,27]? — R, we
have

1
< 3 f(91,92)> :(2702/[0212 £(601, 02)(N?— S (0—0+)2)d1 0.
u(N) -

1<ji#p<N

The integrand is small when 6, is close to 61. The
non-uniformity is reflected in the fact that unitary eigenvalues
tend to repel away from one another.
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Ouitline of proof. The r-point density is a symmetric function of
the eigenangles. Hence we can find its average by integrating
against the joint probability density function for unitary
eigenangles:

< > f(e,1,...,9,,)>
1<t

AAAAA y
- distinctr SN U(N)

1
/\/!(277)/\//[0’2”]N D - 0) det(Sn(bk — 6)))dbs ...

J5eeodr
1< distinct <N



However, the measure above is a symmetric function with
respect to the 6’s (easiest to see from the Vandermonde
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However, the measure above is a symmetric function with
respect to the 6’s (easiest to see from the Vandermonde
squared), so each term in the sum contributes the same
amount, and we get:
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27
Sn(8; — 0)Sn(0 — 6)d6 = 27 Sn(6; — k).

and
2m

Sn(0)d9 = 27N,
0



These two properties allow us (Gaudin’s Lemma) to integrate
out w.r.t. 6,.1,...6y and rewrite the r-point density as:
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1
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Scaling Limit
Let f € L'(R"), and normalize the eigenangles

6; = 0;N/(2r)

to account for the fact that the eigenvalues are getting more
dense on the unit circle. Then, as N — oo,

< > f(§,1,...,§,,)>
1</1

----- Jr
— distinct <N

U(N)
— / f(x1,...,x)det(S(xk — x;))dxq ... dx,
[0700]’ rxr

where
S(x) = sin(mx)/(mx).
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Pair correlation
Let f € L'(R). Applying the two point density to the average
pair correlation gives:

1 . .
<N > (- ej).>
1<j#k<N U(N)

N /N
= /1//0 /0 f(X2 - X1)(2j>?;(SN((Xk — Xj)27T/N)/N)dX1 dxs.

(we have changed variables x; = §;N/(2r)). One can show
that, as N — oo this tends to

[T (s () e
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r-point correlations can similarly be defined and evaluated.
Let f € L'(R"™™"). Then, as N — oo,

1 ~ ~ ~ ~
<N > - /1»---79/2—9/1)>
1<l <N

— f(t1 R P ) det(S(tk_1 — t/‘_1 ))dﬁ . . dtr_1.
Rr-1 rxr

In the determinant we use the convention that #, = 0.



For example, the three-point correlation reads as:

. 1 o
lim <N Z F(0 — 0}, 0, — /1)>

N—oo —
1 S(t) S(b)
[ Huw)| St) 1 Sla-t) |dt.. db.
R S(t) S(t—t) 1

We have cleaned up the entries of the determinant slightly
using S(—x) = S(x).
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Zeros of L-functions
Why might the Riemann Hypothesis be true?

Hilbert and Polya: the Riemann Hypothesis is true for
spectral reasons- the zeros of the zeta function are
associated to the eigenvalues of some Hermitian or unitary
operator acting on some Hilbert space.

Katz and Sarnak studied families of function field zeta
functions (for example, associated to the number of
solutions over finite fields of plane algebraic curves). They
were the first to suggest that the statistics of all the
classical compact groups should be relevant for L-functions
over number fields, such as the Riemann zeta function.
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Montgomery achieved the first result connecting zeros of
zeta with eigenvalues of unitary operators.

Write a typical non-trivial zero of ¢ as
1/2+ ir.
Assume RH for now, so that the ~’s are real. The zeros

come in conjugate pairs, so focus on those lying above the
real axis and order them

O<m<72<...

We can then ask about the distribution of spacings
between consecutive zeros:

Yi+1 — Vi
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: the zeros become more dense as one goes
further in the critical strip.

Let
N(T)
denote the number of non-trivial zeros of {(s) with
0<3(s)<T.
A theorem of von Mangoldt states that

N(T) = 277; log(T/(2me)) + O(log T)
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The mean spacing between consecutive 4’s equals one.

It is easier to consider the pair correlation, a statistic
incorporating differences between all pairs of zeros.



Montgomery’s Conjecture
Let0 < a < 8. Then

1 . - .
M|{1§/</§M:’yj—’y/€[aaﬂ)}‘
5 . 2
N/ (1_<sm7rt> )dt.
o t
as M — oo.

Notice that the integrand is small when t is near 0. Zeros
of zeta tend to repel away from one another.




Montgomery was able to prove that
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as M — oo, for smooth and rapidly decaying functions f
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Rudnick and Sarnak generalized this to any primitive
L-function (assuming a weak form of the Ramanujan

conjectures in the case of higher degree L-functions). They

also gave a smoothed version of the above theorem in the

case that RH is false.
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W =i [ (1—(Si2ft>2> o

1<i<j<M

as M — oo, for smooth and rapidly decaying functions f
satisfying the stringent restriction that f be supported in
(—1,1).

Rudnick and Sarnak generalized this to any primitive
L-function (assuming a weak form of the Ramanujan
conjectures in the case of higher degree L-functions). They
also gave a smoothed version of the above theorem in the
case that RH is false.
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Difference between histogram and prediction.
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There is intricate number theoretic structure in the lower
terms, first described by Bogomolny and Keating, and later
studied using the ‘ratios conjecture’ by Conrey and Snaith.



How Montgomery and Rudnick-Sarnak’s theorems are proven:
Use Weil's explicit formula to relate sums over zeros of zeta to
sums over primes:



How Montgomery and Rudnick-Sarnak’s theorems are proven:
Use Weil's explicit formula to relate sums over zeros of zeta to
sums over primes:

Let e > 0 and ¢(z) analyticin —1/2 — e < ¥(z) <1/2+ e and
satisfy ¢(z) = O(]z|~'~¢) in that strip. Assume further that
d(u) = O(exp(—(r + €)u)) as u — oc. Then

;vﬁ(v) = (¢(i/2)+¢(—i/2))—¢2(g)log7r

/ o(H)R—=(1/4+it/2)dt

27T

A(n) = log(p) if n = pk, 0 otherwise. The sum on the |.h.s. is
over the non-trivial zeros 1/2 + i~ of {(s) each term counted
with multiplicity of the zero. The Riemann Hypothesis (i.e.

v € R) is not assumed.
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Let hy and h, be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f,
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Think of h as pulling out the zeros roughly up to height T.
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To get rid of hy h, approximate x|_4 2 analytically by such
functions. If we assume RH, then hy(v;/T)ho(vx/T) is
evaluated at real values where it approximates x|_1 1}z
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Outline of proof. By Fourier inversion

logT RN -
(=05t ) = [ HtwpetornesTa

2T

Substitute into the pair correlation sum R»(T, f, h), and
separate the the double sum as a product of two sums over
Zeros:

Ro(T,f h) = /_OO (Zm (%) eiuwlogTth (%) g—iuvlog T
- ; h (%) ha (%) >?(u)du.

Apply the explicit formula, multiply out all the terms. In a
nutshell: the support condition, |u| < 1 restricts us, on the prime
side, to the region where only the diagonal sum contributes.



R. data
Pair correlation for five million zeros of L(s, x), g = 3.
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R. data
Pair correlation for five million zeros of L(s, x), g = 4.
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R. data
L(s,x), g =5, 4 graphs averaged, 2 million zeros each.
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R. data
300,000 zeros of the Ramanujan tau L-function.
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Katz-Sarnak
Let A be a matrix in one of the classical compact groups:

o Unitary: AA* = I. Eigenvalues on unit circle.

o Orthogonal: AA! = |, real entries. Eigenvalues come in
conjugate pairs. Distinguish SO(2N), vs SO(2N + 1).
Latter always has an eigenvalue at z = 1.

e Unitary Symplectic: A € U(2N),
AJA=J, J = (f’,N ’g) Eigenvalues come in conjugate
pairs.
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Katz and Sarnak evaluated the average r-point density for
U(N), USp(2N), SO(2N), SO(2N + 1). The scaling limits
are:

Iim< > f(e",1,...,§,,)>
1<t

N—oo y
seeeslr
— distinct <N G(N)

_ /OOO.../OOO FO) WY (x)dx

(U(N) was worked out by Gaudin and Mehta).
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G W(’)
U(N) det (Ko(%, Xk)) 1< k<
USp(2N) det (K10, XK)) 1< </
SO(2N) det (Ki(Xj, Xk)) 1< ks
SO(2N + 1) det (K1 (X, Xk)) 1< k<
+ 3011 0(x,) det (K_1(xj, Xk)) 4 <jtv.ktv<r
with
K.(x.y) = sin(m(x — y)) gsm(w(X +Y))‘

X=Y) (X +Y)

: Gives a specific test that can be used to detect
the different classical compact groups.
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G wi)
U(N) 1
USp(N) 1 — sin(2rx)/(2mx)
SO(2N) 1+ sin(2rx) /(27 x)
SO(2N + 1) | 1 —sin(2nx)/(2nx) + d(x)




One point densities:

G wi)
U(N) 1
USp(N) 1 — sin(2rx)/(2mx)
SO(2N) 1+ sin(2rx) /(27 x)
SO(2N + 1) | 1 —sin(2nx)/(2nx) + d(x)

Especially sensitive (different answers) to the behaviour
nearz = 1.
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Density of zeros for quadratic Dirichlet L-functions
Let

D(X) = {d a fundamental discriminant : |d| < X}

and let xq(n) = (¢) be Kronecker’s symbol. We consider
the zeros of L(s, x4), quadratic Dirichlet L-functions. Write
the non-trivial zeros above the real axis of L(s, x4) as

1/2 4+ iy\Y, j=1,2,3...
sorted by increasing imaginary part, and let

7 = ~log(|dl)/(2m)
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r-point density for L(s, x4), R.
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r-point density for L(s, x4), R.

iMoo 1555 > aenix

Z ji>1 f

distinct
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~(d) z(d)
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r-point density for L(s, x4), R.

- 1
limx_ oo 1D(X) > d

P

fo

d) ~(d
X f<(>, 5

distinct

Usp (x)dx,

g ..



r-point density for L(s, xq), R.

r

IimX_)oo Z ji>1 f

distinct

= oo f Usp x)dx

Assumes f smooth and rapidly decreasing with f
supported in > |uj| < 1. Does not assume GRH.



r-point density for L(s, xq), R.

liMy_ 00 Z ji>1 f ( 5(0) N(d)7 .. 77)//.(d))

b
distinct 12 d

= oo f Usp (x)dx,

Assumes f smooth and rapidly decreasing with f
supported in > |uj| < 1. Does not assume GRH.

This generalized the r = 1 case that had been achieved by

Ozlik and Snyder (and also Katz and Sarnak). WL(J1S)p( )
equals
sin(27x)

1_
27X
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Im part zeros of L(s,chi) mod q

Figure: For comparison: Zeros of L(s, x) for a generic complex
primitive x mod g, g < 5,000. 1-point density is uniform.
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1-point density of zeros of L(s, xq) for 7,000 values of
|d| ~ 10'2. Compared against the random matrix theory
prediction, 1 — sin(27x) /(27 x).



One-level density and distribution of the lowest zero of
even quadratic twists of the Ramanujan 7 L-function,
L-(s,xq), for 11,000 values of d ~ 500, 000 vs prediction
(for large even orthogonal matrices), 1 + sin(27x)/(27x).
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Moments of the zeta function.
Obtain the asymptotics, as T — oo, of

T
/ IC(1/2 + it) 2 dit.
0

k = 1: Hardy and Littlewood, Ingham
k = 2: Ingham, Heath-Brown

k =1,2: Smoothed moments by Kober, Atkinson,
Motohashi.



Hardy and Littlewood, main term for k = 1

/T C(1/2 + it) Pat
0
~ Tlog(T)



Ingham, full asymptotics

/T C(1/2 + it) ot
0
= Tlog(T/(2r)) + T(2y —1)+ O(T"Zlog(T))



Balsubramanian
T
/ C(1/2 + it) Pat
0
= Tlog(T/(2r))+ T(2y—1) +



lvic
;
/ C(1/2 + it) Pat
0
= Tlog(T/(2n))+ T(2y — 1)+ O(T°/198+)



Ingham, main asymptotics for k = 2
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Ingham, main asymptotics for k = 2
T
/ C(1/2+ it)*at
0

Tlog(T)*
272
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Heath-Brown, full asymptotics:
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Heath-Brown, full asymptotics:

/T C(1/2 + it)*at
0

4
=T clog(T)* "+ O(T"/®+)
r=0

co = 1/(27°)
¢ = 2(4y—1—log(2n)—12¢'(2)/n?) /x>

with ¢, ¢3, ¢4 implicitly given but not worked out explicitly
by Heath-Brown.
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a :H (1 _p_1>k2 s <n+g— 1)2'0_”.
P

n=0



Conjecture (Conrey and Ghosh):

r i) (2K ak Gk K2
/0 €(1/2 + if*at ~ T 9K tog(T)

where g, € Z and
AR ntk—1\% _
w102 ) S (") e
p n=0
The inner sumis 2 Fy(k, k; 1;1/p).



T . ax gk 2
/ C(1/2 + ity 2t ~ T 2K og(T)e
0 k2|

Hardy and Littlewood: g = 1



-
‘C1 2 12k -~ ax gk
A (1/2 + it)/Pdt ~ T=5E log(T)*

Ingham: g» =2



T : ak Gk 2
/ ic(1/2+it)PKdt ~ T = log(T)¥
0 K21

Conjecture, Conrey and Ghosh: gz = 42



.
/ C(1/2 + it)Podt ~ TEIK jog(T)K*
. K2

Conjecture, Conrey and Gonek: g4 = 24024
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T : ak Gk 2
/ ic(1/2+it)PKdt ~ T = log(T)¥
0 K21

Conjecture, Keating and Snaith

Conrey and Farmer proved that rhs € Z.



T N 12K akgk
/0 €12+ i ot ~ T jog( 7

Conrey, Farmer, R., Keating and Snaith conjectured
the full asymptotics.



Three heuristic approaches to studying the moments:



Three heuristic approaches to studying the moments:
o Keating and Snaith, based on the analogous result in rmt.



Three heuristic approaches to studying the moments:
o Keating and Snaith, based on the analogous result in rmt.
e CFKRS, based on approximate functional equation, guided
by rmt.



Three heuristic approaches to studying the moments:
o Keating and Snaith, based on the analogous result in rmt.
e CFKRS, based on approximate functional equation, guided
by rmt.
e Gonek, Hughes, and Keating, based on combination of the
Weil explicit formula and rmt. Incorporates zeros and
primes. Won't discuss here.
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Keating and Snaith.
Let A € U(N) with eigenvalues exp(if1), ..., exp(ify).
Characteristic polynomial, evaluated on unit circle:

N
pa(2) =[] (2 exp(ity))
1

Let My(n)(2k) denote the 2kth moment, over U(N), of
|pa(exp(if))|. Is independent of 0, i.e. where on the unit
circle we do the average, hence no 4 in notation for M.
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1

< T lexp(iok) — exp(i6))|” |pa(exp(ia))[?

1<j<k<N

KS, using the Selberg integral:

_ ﬁ Frk+j) Gk +1)2 GIN+1)G(N + 2k + 1)

L Tk+)P TGk GIN+ k1)

where G is Barnes’ G-function, for ®k > —1/2.
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G is an entire function satisfying
G(1) =1
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G is an entire function satisfying
G(1) =1
G(z+1)=T(2)G(2)

and is given by

G(z+1) = (2n)?/2e NP2 T] (1 4 z/n)ne~2+2/2n),

n=1



If 2k € Z, this simplifies



If 2k € Z, this simplifies

=
-

i k—1 o

x -
I

1

J! K2
~ j—}—k)!N7 as N — oc.
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Comparing density of zeros of zeta at height T: log T /(27),
v.s. eigenangle density for U(N): N/(2x),
KS predicted

1 T N 2k ke j' k2
T/o C(1/2 + if) dtNaKjZHOMIog(T)

k—1 i
k& L
Ik ,:H) G+ K)!

Does produce: g1 =1, g» = 2, g3 = 42, g4 = 24024.
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and Snaith method is ad hoc. And, why compare density of
zeros? Seems to produce the right answer, but that is just
good (great!) luck.

Gonek, Hughes, and Keating have developed a hybrid
formula for zeta which expresses it as a truncated Euler
product over primes times a truncated Hadamard product
over zeros.



Problem with this model: how does the ai arise? Keating
and Snaith method is ad hoc. And, why compare density of
zeros? Seems to produce the right answer, but that is just
good (great!) luck.

Gonek, Hughes, and Keating have developed a hybrid
formula for zeta which expresses it as a truncated Euler
product over primes times a truncated Hadamard product
over zeros. Explains how both the ax and gy arise.



Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:



Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:

For positive integer k, and any ¢ > 0,

T T
/O |C(1/.2+it)|2kdt:/0 Py (log oL ) dt + O(T1/2+¢),

where Py is the polynomial of degree k? given implicitly by
the 2k-fold residue...



Pk():(;[2 27” ?{ j{ (z1,... sz 2(z1,...,20)
HZZk

s k 5
x @2 et Zi—Zivk dz1 . dsz;

with the path of integration over small circles about z; = 0.
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k k

F(zi,...,z26) = Ax(z1, .. z2i) [ [T ] €1 + 20 =z,

i=1 j=1

and A is the product over primes:

Ax(z1,..., Zok)
K
=TI T - p 1 -2t2e)
p ij—1

—1 —1
x/ H (1 — +z) X (1 — 61(__20)_) de.
pz ] pz k+j

Here e(0) = exp(27i0).
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Example, k = 1
In this case, A1(z1,22) =1

C(1+2z1—22)(22 — 21)° _X(z-2)
P - A 2
1(x) 27r 2 j{ j{ z 22 e dz1dz,

= X+2y

by extracting the coefficient of zyz, of the numerator.
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P - A 2
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= X+2y

by extracting the coefficient of zyz, of the numerator.



Example, k = 1
In this case, A1(z1,22) =1

(1 +21—2)(22—21) _X(-2)
1(x) 271' 2 j{ ]{ 222 e dz1dz,

= X+2y

by extracting the coefficient of zyz, of the numerator.
So, the full asymptotics of the second moment is given by:

)
/0 (log(t/(27)) + 2+)dt = Tlog(T/(27)) + T(2y — 1)

consistent with Ingham.
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Example, k =2

In this case, A2(Z1 , 22,23, Z4) = <(2 +2Z1+20 — 23 — Z4)_1,
and computing the residue gives:



Example, k =2

In this case, A2(21 , 20,23, Z4) = C(2 +2Z1+20 — Z3 — Z4)_1,
and computing the residue gives:
1 4

8
P00 = oox (v7% =3¢’ (2)) ¥°

6
+= (748%’(2)7:2 —12¢"(2)7% + 7427 +144¢ (2)% — 24 71'4) x?
™
12
+= (6'y37r6 — 8472¢" (@)t + 244, ¢ (@)x* — 1728¢ (2)° + 576+4¢" (2)2 72
T
+288¢’(2)¢" (2)7? — 8¢"" (2)m* — 1071478 — pn® — 43«,4”(2)774))(

4
+ <-12¢””(2)7r8 +3672¢" ()7 + 9y* 7 + 214278 4 432¢" (2)2 1

=T
+ 3456~¢ (2)¢" (2)7* + 8024+2¢" (2)% 7% — 8642~ 78 — 252¢2¢" (2)n®
+ Byyom® + 72v4¢" (278 + 36071 ~¢" (2)7° — 216~43¢ (2)=®
— 864y1¢" (22 + Brygn® +576¢7(2)¢"" (2)7* — 20736~¢" (2)° 72

— 15552¢"" (2)¢’ (2)%72 — 96v¢"" (2)m® + 62208C/(2)4),

consistent with Heath-Brown.
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We developed formulas and algorithms to compute the
coefficients of Px(x) and found, for example,

P3(X) =

T e St e S

0.00000570852703465278839837684 1445252313 x°
0.00040502133088411440331215332025984 x®
0.011072455215246998350410400826667 x’
0.14840073080150272680851401518774 x5
1.0459251779054883439385323798059 x°
3.984385094823534724747964073429 x*
8.60731914578120675614834763629 x°
10.274330830703446134183009522 x2
6.59391302064975810465713392 x
0.9165155076378930590178543.



We developed formulas and algorithms to compute the
coefficients of Px(x) and found, for example,

Ps(x) = 0.00000570852703465278839837684 1445252313 x°
0.00040502133088411440331215332025984 x®
0.011072455215246998350410400826667 x’
0.14840073080150272680851401518774 x5
1.0459251779054883439385323798059 x°
3.984385094823534724747964073429 x*
8.60731914578120675614834763629 x°
10.274330830703446134183009522 x2
6.59391302064975810465713392 x
0.9165155076378930590178543.

T e St e S

In our paper we got up to k = 7. With my Master’s student,
Shuntaro Yamagishi, we extended our tables to k = 13.



As k grows, the leading coefficients become very small.
Because we are evaluating this as a polynomial in log t/(27),
which increases slowly, the lower terms are very relevant for
checking the conjecture.



As k grows, the leading coefficients become very small.
Because we are evaluating this as a polynomial in log t/(27),
which increases slowly, the lower terms are very relevant for
checking the conjecture.

Hiary-R. have worked out the uniform asymptotics of these
coefficients, in the case of rmt, and partially here. Yamagishi is
considering the same problem for orthogonal and unitary
symplectic moment polynomials.



For example, expand the Keating Snatih U(N) moment
polynomial:

k—1 j' k—1 k2 ,
.H <(j+'k). [TN+i+j+ 1)) => (kN

j=0 T =0 r=0




For example, expand the Keating Snatih U(N) moment
polynomial:

k—1 . k—1 k2
jl H(N . . ) K2_r
11|~ +itj+1)) =D (N,
j=0 (0 +k)! i=0 r=0
and let

k p 2k

_ J 2k—j _ _ _
M-—Zj+1+ i — klog4 — log(k/2) +1/2 —~ + O(1/k

j=k+1



For example, expand the Keating Snatih U(N) moment
polynomial:

k

—1 . k—1 k2
jl . . K2_
: (N‘H‘H‘H)) = cr(K)N“T,
1 (/5 11 2

1=

k , 2k .
p=S 24 2K=1 _ Klog4a — log(k/2) +1/2 — v+ O(1 /k
J+1 j=k+1 J+1

Then, Hiary-R. prove that there exists p > 0 such that, for all k
sufficiently large, a maximal ¢, (k) occurs for some

r e [k?—p—plog(k)?/k,kK? — p+1+ plog(k)?/k], (1)

and no maximal ¢,(k) occurs outside of that interval.
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Agreement is to about 7 decimal places out of 9. Joint with

Shuntaro Yamagishi (Master’s thesis).
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Moments of L(1/2, xq)
Conjecture (Keating-Snaith):

K
1 |
ID(X)| Z L(%7Xd)k akHjillog(X)k(kH)/Z
DO oot iy (2))
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(-5 (=) +(+5)7" 4
=1l ! +-— .
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Moments of L(1/2, xq)
Conjecture (Keating-Snaith):

D 556 .
where
k(k+1) _ _
oo ims) = (0o O gp) ™ 1
L 2 p

Proved by Jutila for k = 1,2 and Soundararajan for k = 3.
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Let A € USp(2N) with eigenvalues et/ ... e+,
Characteristic polynomial, evaluated at z = 1

N
[T11 - exp(ioy)?
)
kth moment, over USp(2N), is asymptotically, for k € Z:

H L (2N)K(k+1)/2
= @)

Density 2N/(27) versus log |d|/(27).
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Let D (X) denote the sets of positive (respectively negative)
fundamental discriminants with |d| < X. Conjecture (CFKRS):

3 X
> Ldxa) = 7T2/ Q. (k. log |t])dt + o(X)
deDx (X) 0

To define Q4,leta=0ifd >0anda=1if d <0, and

)
r(%) ’

X(s,a) =5z

G(Z1,..-, ) Ak 217" ZK)HX +Z]7 H C(1+ZI+Z/)7

1<i<j<k



and A is the Euler product, absolutely convergent for
|Rzj| < 5, defined by

A(z1,. .., 2k H H < 1+z,+z/>

p 1<i<j<k

1 [ 1\
x| = 1— +
(2 (,11 ( p5+zf> ,1—1




and A is the Euler product, absolutely convergent for
|Rzj| < 5, defined by

A(z1,. .., 2k H H < 1+z,+z/>

p 1<i<j<k

1 (£ 1\ 1\
x| = 1— + 1+
(2 (,H( p5+zf> E( p5+zf>
—1
><<1—|—1> .
p

Q4 (k, x) is the polynomial of degree k(k + 1)/2 given by the
k-fold residue

(—1)" 21,..., A(Z2,... 28 x5,
e2 ~=14dzy ... dz,
k! 271'/
S2k—1

l
/:1

Rishikesh-R. have worked out formulas for the coefficients of
Q4+ (k, x). (CFKRS did so for zeta moment polynomials).
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Master’s student Matthew Alderson.
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Diaconu, Goldfeld, and Hoffstein conjectured that further lower
order terms exists for k € Z, k > 3. For k = 3 they conjecture
an additional term of the form bx3/%. Qiao Zhang computed
b=-.07ford>0,and b= —.14ford < 0.
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Lower terms for the moments of elliptic curve L-functions.
Let E be an elliptic curve over Q and let it’s L-function be

Le(s) =S 2 =TT (1) '] (1 -2 s +p' %)
n=1

plQ piQ
=[[2s(1/0%.  ®(s)>3/2.
p

Q is the conductor of E, and ap = p+ 1 — #E(Fp).



Le(s) has analytic continuation to C and satisfies a
functional equation of the form

with wg = £1.
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Let

>, a n
Le(S,xa) = n);;( )
n=1

be the L-function of the elliptic curve Eg, the quadratic twist
of E by the fundamental discriminant d. If (d, Q) = 1, then
Le(s, xq) satisfies the functional equation

(&) T HS)Le(5. xa)

— ya(-Qwe ( ul

s—2
\/6|d|) I'(2 — S)LE(2 — S, Xd)-

()

Focus on even functional equation: x4(—Q)wg = 1.
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Let
S(X) = {|d| < X; xa(—Q)we = 1}.

For a fixed prime g 1 Q, let
Z des(X) 1

Le(1,x¢)=0

R X — Xd(Q):1
CI( ) Z des(X) 1
Le(1,x¢)=0
xg(q)=—1
be the ratio of the number of vanishings of Lg(1, xq) sorted
according to whether xq4(gq) =1 or —1.



Let

R, = q+1 _aq>1/2
T \g+1+ag



Let 12
Ry = <q+1—aq> .
q+1+aq
A conjecture (ckrs 2000) asserts that, for g 1 Q,

The power 1/2 comes from the pole at k = —1/2 in the
moments, as predicted by the moments in SO(2N). We
can also restrict to subsets such as d < 0 or d > 0 (the
arithmetic factor is the same for these two families).



Using the full asymptotics for the moments in both families, we
can derive (conjecturally) more terms for Rq(X):



Using the full asymptotics for the moments in both families, we
can derive (conjecturally) more terms for Rq(X):

a1 N
A0 = (Tal) (1 ey + Olloax) )

0 3 aqlog(g)(q-1)
T 2(q+1-ag)(g+1+a)

Furthermore, when a5 = 0 the full asymptotics for both
coincide and this explains why we then seem to get

Rq(X) =1+ O(X~1/2+)
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A plot for one hundred data sets. g, horizontal, versus
Rq(108) — Ry, vertical.



01 - — —

—— T
"second_approx_100_curves"

- 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Taking into account the next term in the asymptotics.



Left to right, top to bottom: n = —20,—-9, —6,—-3,—1,3,6,9, 20. Values of
R4(108) — Ry, 2 < g < 500, for the subset of our elliptic curves satisfying
a, = n. The blank white areas on the left reflect Hasse’s theorem.



Taking into account the next term.
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