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Some background in random matrix theory:
In his The Classical Groups, Weyl worked out Haar
measure for class functions on the classical compact
groups: U(N), and the orthogonal and symplectic groups.
Let A ∈ U(N) be a unitary matrix, AA∗ = I, with
eigenvalues eiθ1 , . . . ,eiθN , 0 ≤ θj < 2π.
Let f (A) = f (θ1, . . . , θN) be a class function on U(N), only
depending on the conjugacy class that A belongs to, i.e. a
symmetric function on the eigenangles θj .
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Haar measure for class functions on U(N) is given in terms
of its joint probability density function for eigenangles:

〈f (A)〉U(N) =

1
N!(2π)N

∫
[0,2π]N

f (θ1, . . . , θN)
∏

1≤j<k≤N

∣∣eiθk − eiθj
∣∣2 dθ1 . . . dθN ,

f integrable.
The statistics that we will consider:

Eigenangle densities and correlations.
Moments of characteristic polynomials.
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Another formula for this measure.
Define

SN(θ) = sin(Nθ/2)/ sin(θ/2),

and take SN(0) = N. Then∏
1≤j<k≤N

∣∣exp(iθk )− exp(iθj)
∣∣2 = det

N×N
(SN(θk − θj)).

Derive this formula by expressing the l.h.s. as a product of two
Vandermonde determinants:

det
N×N

(exp(i(k − 1)θj)) det
N×N

(exp(−i(k − 1)θj)),

multiplying the two matrices, summing the geometric series,
and simplifying.
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r -point density.
We would like to know, on average over U(N), the number of
eigenangles that lie in an interval [a,b], and more generally, the
density of r -tuples of eigenangles lying in a ‘box’. Let r be a
positive integer, and f : [0,2π]r → R an integrable function. For
A ∈ U(N) with eigenangles 0 ≤ θ1, . . . , θN < 2π, we define the
r -point density, weighted by f , to be the sum over all distinct
r -tuples: ∑

1≤ j1,...,jr
distinct ≤N

f (θj1 , . . . , θjr ).

The sum is over r !
(N

r

)
ways to select our r -tuples of distinct θ’s

from the N eigenangles.
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The main result for U(N), due to Gaudin and Mehta, is:
Theorem: Let f : [0,2π]r → R be an integrable function. Then〈 ∑

1≤ j1,...,jr
distinct ≤N

f (θj1 , . . . , θjr )

〉
U(N)

equals the following r -dimensional integral:

1
(2π)r

∫
[0,2π]r

f (θ1, . . . , θr ) det
r×r

(SN(θk − θj))dθ1 . . . dθr .
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For r = 1 and integrable f : [0,2π]→ R, the theorem reads〈
N∑

j=1

f (θj)

〉
U(N)

=
N
2π

∫ 2π

0
f (θ)dθ,

i.e. uniform density on [0,2π]. Here we have used SN(0) = N.
However, if r = 2, then pairs of eigenangles are not uniformly
dense in the box [0,2π]2. For integrable f : [0,2π]2 → R, we
have〈 ∑

1≤j1 6=j2≤N

f (θ1, θ2)

〉
U(N)

=
1

(2π)2

∫
[0,2π]2

f (θ1, θ2)(N2−SN(θ2−θ1)2)dθ1dθ2.

The integrand is small when θ2 is close to θ1. The
non-uniformity is reflected in the fact that unitary eigenvalues
tend to repel away from one another.
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Outline of proof. The r -point density is a symmetric function of
the eigenangles. Hence we can find its average by integrating
against the joint probability density function for unitary
eigenangles:
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However, the measure above is a symmetric function with
respect to the θ’s (easiest to see from the Vandermonde
squared), so each term in the sum contributes the same
amount, and we get:
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Two useful properties:∫ 2π

0
SN(θj − θ)SN(θ − θk )dθ = 2πSN(θj − θk ),

and ∫ 2π

0
SN(0)dθ = 2πN.
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These two properties allow us (Gaudin’s Lemma) to integrate
out w.r.t. θr+1, . . . θN and rewrite the r -point density as:
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Scaling Limit
Let f ∈ L1(Rr ), and normalize the eigenangles

θ̃i = θiN/(2π)

to account for the fact that the eigenvalues are getting more
dense on the unit circle. Then, as N →∞,〈 ∑

1≤ j1,...,jr
distinct ≤N

f (θ̃j1 , . . . , θ̃jr )

〉
U(N)

→
∫

[0,∞]r
f (x1, . . . , xr ) det

r×r
(S(xk − xj))dx1 . . . dxr ,

where
S(x) = sin(πx)/(πx).
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Pair correlation
Let f ∈ L1(R). Applying the two point density to the average
pair correlation gives:〈

1
N

∑
1≤j 6=k≤N

f (θ̃k − θ̃j).

〉
U(N)

=
1
N

∫ N

0

∫ N

0
f (x2 − x1) det

2×2
(SN((xk − xj)2π/N)/N)dx1dx2.

(we have changed variables xj = θjN/(2π)). One can show
that, as N →∞ this tends to

=

∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .
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r -point correlations can similarly be defined and evaluated.
Let f ∈ L1(Rr−1). Then, as N →∞,〈

1
N

∑
1≤ j1,...,jr

distinct ≤N

f (θ̃jr − θ̃j1 , . . . , θ̃j2 − θ̃j1)

〉
U(N)

→
∫

Rr−1
f (t1, . . . , tr−1) det

r×r
(S(tk−1 − tj−1))dt1 . . . dtr−1.

In the determinant we use the convention that t0 = 0.
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For example, the three-point correlation reads as:

lim
N→∞

〈
1
N

∑
1≤ j1,j2,j3

distinct≤N

f (θ̃j3 − θ̃j1 , θ̃j2 − θ̃j1)

〉
U(N)

=

∫
R2

f (t1, t2)

∣∣∣∣∣∣
1 S(t1) S(t2)

S(t1) 1 S(t2 − t1)
S(t2) S(t2 − t1) 1

∣∣∣∣∣∣dt1 . . . dt2.

We have cleaned up the entries of the determinant slightly
using S(−x) = S(x).



Zeros of L-functions
Why might the Riemann Hypothesis be true?

Hilbert and Polya: the Riemann Hypothesis is true for
spectral reasons- the zeros of the zeta function are
associated to the eigenvalues of some Hermitian or unitary
operator acting on some Hilbert space.
Katz and Sarnak studied families of function field zeta
functions (for example, associated to the number of
solutions over finite fields of plane algebraic curves). They
were the first to suggest that the statistics of all the
classical compact groups should be relevant for L-functions
over number fields, such as the Riemann zeta function.
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Montgomery achieved the first result connecting zeros of
zeta with eigenvalues of unitary operators.
Write a typical non-trivial zero of ζ as

1/2 + iγ.

Assume RH for now, so that the γ’s are real. The zeros
come in conjugate pairs, so focus on those lying above the
real axis and order them

0 < γ1 ≤ γ2 ≤ γ3 . . .

We can then ask about the distribution of spacings
between consecutive zeros:

γi+1 − γi .
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Technicality: the zeros become more dense as one goes
further in the critical strip.
Let

N(T )

denote the number of non-trivial zeros of ζ(s) with
0 < =(s) ≤ T .
A theorem of von Mangoldt states that

N(T ) =
T
2π

log(T/(2πe)) + O(log T )
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Set
γ̃ = γ

log(|γ|/(2πe))

2π
.

The mean spacing between consecutive γ̃’s equals one.

It is easier to consider the pair correlation, a statistic
incorporating differences between all pairs of zeros.
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Montgomery’s Conjecture
Let 0 ≤ α < β. Then

1
M
|{1 ≤ i < j ≤ M : γ̃j − γ̃i ∈ [α, β)}|

∼
∫ β

α

(
1−

(
sinπt
πt

)2
)

dt .

as M →∞.
Notice that the integrand is small when t is near 0. Zeros
of zeta tend to repel away from one another.



Montgomery was able to prove that

1
M

∑
1≤i<j≤M

f (γ̃j − γ̃i)→
∫ ∞

0
f (t)

(
1−

(
sinπt
πt

)2
)

dt

as M →∞, for smooth and rapidly decaying functions f
satisfying the stringent restriction that f̂ be supported in
(−1,1).
Rudnick and Sarnak generalized this to any primitive
L-function (assuming a weak form of the Ramanujan
conjectures in the case of higher degree L-functions). They
also gave a smoothed version of the above theorem in the
case that RH is false.
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Odlyzko data: 2× 108 zeros of zeta near the 1023rd zero.
Pair correlation from data, bins of size .01, versus
1− sin(πt)2/(πt)2.
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Difference between histogram and prediction.
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There is intricate number theoretic structure in the lower
terms, first described by Bogomolny and Keating, and later
studied using the ‘ratios conjecture’ by Conrey and Snaith.
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How Montgomery and Rudnick-Sarnak’s theorems are proven:
Use Weil’s explicit formula to relate sums over zeros of zeta to
sums over primes:
Let ε > 0 and φ(z) analytic in −1/2− ε ≤ =(z) ≤ 1/2 + ε and
satisfy φ(z) = O(|z|−1−ε) in that strip. Assume further that
φ̂(u) = O(exp(−(π + ε)u)) as u →∞. Then

∑
γ

φ(γ) = (φ(i/2) + φ(−i/2))− φ̂(0)

2π
logπ

+
1

2π

∫ ∞
−∞

φ(t)<Γ′

Γ
(1/4 + it/2)dt

− 1
2π

∞∑
n=1

Λ(n)

n1/2

(
φ̂

(
log(n)

2π

)
+ φ̂

(
− log(n)

2π

))
.

Λ(n) = log(p) if n = pk , 0 otherwise. The sum on the l.h.s. is
over the non-trivial zeros 1/2 + iγ of ζ(s) each term counted
with multiplicity of the zero. The Riemann Hypothesis (i.e.
γ ∈ R) is not assumed.



How Montgomery and Rudnick-Sarnak’s theorems are proven:
Use Weil’s explicit formula to relate sums over zeros of zeta to
sums over primes:
Let ε > 0 and φ(z) analytic in −1/2− ε ≤ =(z) ≤ 1/2 + ε and
satisfy φ(z) = O(|z|−1−ε) in that strip. Assume further that
φ̂(u) = O(exp(−(π + ε)u)) as u →∞. Then

∑
γ

φ(γ) = (φ(i/2) + φ(−i/2))− φ̂(0)

2π
logπ

+
1

2π

∫ ∞
−∞

φ(t)<Γ′

Γ
(1/4 + it/2)dt

− 1
2π

∞∑
n=1

Λ(n)

n1/2

(
φ̂

(
log(n)

2π

)
+ φ̂

(
− log(n)

2π

))
.

Λ(n) = log(p) if n = pk , 0 otherwise. The sum on the l.h.s. is
over the non-trivial zeros 1/2 + iγ of ζ(s) each term counted
with multiplicity of the zero. The Riemann Hypothesis (i.e.
γ ∈ R) is not assumed.



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



Let h1 and h2 be smooth and rapidly decreasing, with
compactly supported Fourier transforms. Assume same for f ,
but with f̂ supported in (−1,1). Rudnick and Sarnak consider
the smoothed sums:

R2(T , f ,h) =
∑
j 6=k

h1(γj/T )h2(γk/T )f
(

(γj − γk )
log T
2π

)
.

Think of h as pulling out the zeros roughly up to height T .
Theorem (Montgomery , Rudnick-Sarnak version which does
not assume RH).

lim
T→∞

R2(T , f ,h)

N(T )
=

∫ ∞
−∞

h1(r)h2(r)dr

×
∫ ∞
−∞

f (t)

(
1−

(
sinπt
πt

)2
)

dt .



To get rid of h1h2 approximate χ[−1,1]2 analytically by such
functions. If we assume RH, then h1(γj/T )h2(γk/T ) is
evaluated at real values where it approximates χ[−1,1]2 .
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Outline of proof. By Fourier inversion

f
(

(γj − γk )
log T
2π

)
=

∫ ∞
−∞

f̂ (u)eiu(γj−γk ) log T du.

Substitute into the pair correlation sum R2(T , f ,h), and
separate the the double sum as a product of two sums over
zeros:

R2(T , f ,h) =

∫ ∞
−∞

(∑
γ

h1

( γ
T

)
eiuγ log T

∑
γ

h2

( γ
T

)
e−iuγ log T

−
∑
γ

h1

( γ
T

)
h2

( γ
T

))
f̂ (u)du.

Apply the explicit formula, multiply out all the terms. In a
nutshell: the support condition, |u| < 1 restricts us, on the prime
side, to the region where only the diagonal sum contributes.
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R. data
Pair correlation for five million zeros of L(s, χ), q = 3.
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Normalization: γ̃ = γ log(γq/(2πe))/(2π).



R. data
Pair correlation for five million zeros of L(s, χ), q = 4.
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R. data
L(s, χ), q = 5, 4 graphs averaged, 2 million zeros each.
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R. data
300,000 zeros of the Ramanujan tau L-function.
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Normalization: γ̃ = γ log(γ/(2πe))/π.



Katz-Sarnak
Let A be a matrix in one of the classical compact groups:
• Unitary: AA∗ = I. Eigenvalues on unit circle.
• Orthogonal: AAt = I, real entries. Eigenvalues come in

conjugate pairs. Distinguish SO(2N), vs SO(2N + 1).
Latter always has an eigenvalue at z = 1.

• Unitary Symplectic: A ∈ U(2N),
AtJA = J, J =

(
0 IN
−IN 0

)
Eigenvalues come in conjugate

pairs.
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Katz and Sarnak evaluated the average r -point density for
U(N), USp(2N), SO(2N), SO(2N + 1). The scaling limits
are:

lim
N→∞

〈 ∑
1≤ j1,...,jr

distinct ≤N

f (θ̃j1 , . . . , θ̃jr )

〉
G(N)

=

∫ ∞
0

. . .

∫ ∞
0

f (x)W (r)
G (x)dx

(U(N) was worked out by Gaudin and Mehta).
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G W (r)
G

U(N) det
(
K0(xj , xk )

)
1≤j,k≤r

USp(2N) det
(
K−1(xj , xk )

)
1≤j,k≤r

SO(2N) det
(
K1(xj , xk )

)
1≤j,k≤r

SO(2N + 1) det
(
K−1(xj , xk )

)
1≤j,k≤r

+
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1≤j 6=ν,k 6=ν≤r

with

Kε(x , y) =
sin(π(x − y))

π(x − y)
+ ε

sin(π(x + y))

π(x + y)
.

Main point: Gives a specific test that can be used to detect
the different classical compact groups.
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One point densities:

G W (1)
G

U(N) 1
USp(N) 1− sin(2πx)/(2πx)

SO(2N) 1 + sin(2πx)/(2πx)

SO(2N + 1) 1− sin(2πx)/(2πx) + δ(x)

Especially sensitive (different answers) to the behaviour
near z = 1.
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Density of zeros for quadratic Dirichlet L-functions
Let

D(X ) = {d a fundamental discriminant : |d | ≤ X}

and let χd (n) =
(d

n

)
be Kronecker’s symbol. We consider

the zeros of L(s, χd ), quadratic Dirichlet L-functions. Write
the non-trivial zeros above the real axis of L(s, χd ) as

1/2 + iγ(d)
j , j = 1,2,3 . . .

sorted by increasing imaginary part, and let

γ̃ = γ log(|d |)/(2π)
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r -point density for L(s, χd ), R.

limX→∞
1

|D(X)|
∑

d∈D(X)

∑
ji≥1

distinct
f
(
γ̃

(d)
j1
, γ̃

(d)
j2
, . . . , γ̃

(d)
jr

)
=
∫∞

0 . . .
∫∞

0 f (x)W (r)
USp(x)dx ,

Assumes f smooth and rapidly decreasing with f̂
supported in

∑
|ui | < 1. Does not assume GRH.

This generalized the r = 1 case that had been achieved by
Özlük and Snyder (and also Katz and Sarnak). W (1)

USp(x)
equals

1− sin(2πx)

2πx
.
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Figure: For comparison: Zeros of L(s, χ) for a generic complex
primitive χ mod q, q ≤ 5,000. 1-point density is uniform.



1-point density of zeros of L(s, χd ) for 7,000 values of
|d | ≈ 1012. Compared against the random matrix theory
prediction, 1− sin(2πx)/(2πx).



One-level density and distribution of the lowest zero of
even quadratic twists of the Ramanujan τ L-function,

Lτ (s, χd ), for 11,000 values of d ≈ 500,000 vs prediction
(for large even orthogonal matrices), 1 + sin(2πx)/(2πx).



Moments of the zeta function.
Obtain the asymptotics, as T →∞, of∫ T

0
|ζ(1/2 + it)|2kdt .

k = 1: Hardy and Littlewood, Ingham
k = 2: Ingham, Heath-Brown
k = 1,2: Smoothed moments by Kober, Atkinson,
Motohashi.
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0
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Hardy and Littlewood, main term for k = 1∫ T

0
|ζ(1/2 + it)|2dt

∼ T log(T )



Ingham, full asymptotics∫ T

0
|ζ(1/2 + it)|2dt

= T log(T/(2π)) + T (2γ − 1) + O(T 1/2 log(T ))



Balsubramanian∫ T

0
|ζ(1/2 + it)|2dt

= T log(T/(2π)) + T (2γ − 1) + O(T 1/3+ε)



Ivic ∫ T

0
|ζ(1/2 + it)|2dt

= T log(T/(2π)) + T (2γ − 1) + O(T 35/108+ε)



Ingham, main asymptotics for k = 2∫ T

0
|ζ(1/2 + it)|4dt

∼ T log(T )4

2π2



Ingham, main asymptotics for k = 2∫ T

0
|ζ(1/2 + it)|4dt

∼ T log(T )4

2π2



Heath-Brown, full asymptotics:∫ T

0
|ζ(1/2 + it)|4dt

= T
4∑

r=0

cr log(T )4−r + O(T 7/8+ε)

c0 = 1/(2π2)

c1 = 2(4γ − 1− log(2π)− 12ζ ′(2)/π2)/π2

with c2, c3, c4 implicitly given but not worked out explicitly
by Heath-Brown.
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(
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The inner sum is 2F1(k , k ; 1; 1/p).
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0
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Hardy and Littlewood: g1 = 1



∫ T

0
|ζ(1/2 + it)|2kdt ∼ T
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log(T )k2

Ingham: g2 = 2



∫ T

0
|ζ(1/2 + it)|2kdt ∼ T

akgk

k2!
log(T )k2

Conjecture, Conrey and Ghosh: g3 = 42



∫ T

0
|ζ(1/2 + it)|2kdt ∼ T

akgk

k2!
log(T )k2

Conjecture, Conrey and Gonek: g4 = 24024



∫ T

0
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akgk

k2!
log(T )k2

Conjecture, Keating and Snaith

gk = k2!
k−1∏
j=0

j!
(j + k)!

.

Conrey and Farmer proved that rhs ∈ Z.
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∫ T

0
|ζ(1/2 + it)|2kdt ∼ T

akgk

k2!
log(T )k2

Conrey, Farmer, R., Keating and Snaith conjectured
the full asymptotics.



Three heuristic approaches to studying the moments:
• Keating and Snaith, based on the analogous result in rmt.
• CFKRS, based on approximate functional equation, guided

by rmt.
• Gonek, Hughes, and Keating, based on combination of the

Weil explicit formula and rmt. Incorporates zeros and
primes. Won’t discuss here.
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Keating and Snaith.
Let A ∈ U(N) with eigenvalues exp(iθ1), . . . ,exp(iθN).
Characteristic polynomial, evaluated on unit circle:

pA(z) =
N∏
1

(
z − exp(iθj)

)
.

Let MU(N)(2k) denote the 2k th moment, over U(N), of
|pA(exp(iθ))|. Is independent of θ, i.e. where on the unit
circle we do the average, hence no θ in notation for M.
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MU(N)(2k) =
1

N!(2π)N

∫
[0,2π]N

dθ1 . . . dθN

×
∏

1≤j<k≤N

∣∣exp(iθk )− exp(iθj)
∣∣2 |pA(exp(iθ))|2k

KS, using the Selberg integral:

=
N∏

j=1

Γ(j)Γ(2k + j)
Γ(k + j)2 =

G(k + 1)2

G(2k + 1)

G(N + 1)G(N + 2k + 1)

G(N + k + 1)2

where G is Barnes’ G-function, for <k > −1/2.
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G is an entire function satisfying
G(1) = 1
G(z + 1) = Γ(z)G(z)

and is given by

G(z + 1) = (2π)z/2e−(z+(1+γ)z2)/2
∞∏

n=1

(1 + z/n)ne−z+z2/(2n).
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If 2k ∈ Z, this simplifies

MU(N)(2k) =
k−1∏
j=0

(
j!

(j + k)!

k−1∏
i=0

(N + i + j + 1)

)

∼
k−1∏
j=0

j!
(j + k)!

Nk2
, as N →∞.
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Comparing density of zeros of zeta at height T : log T/(2π),
v.s. eigenangle density for U(N): N/(2π),
KS predicted

1
T

∫ T

0
|ζ(1/2 + it)|2kdt ∼ ak

k−1∏
j=0

j!
(j + k)!

log(T )k2

i.e.

gk = k2!
k−1∏
j=0

j!
(j + k)!

.

Does produce: g1 = 1, g2 = 2, g3 = 42, g4 = 24024.
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Problem with this model: how does the ak arise? Keating
and Snaith method is ad hoc. And, why compare density of
zeros? Seems to produce the right answer, but that is just
good (great!) luck.
Gonek, Hughes, and Keating have developed a hybrid
formula for zeta which expresses it as a truncated Euler
product over primes times a truncated Hadamard product
over zeros. Explains how both the ak and gk arise.
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Using number theoretic heuristics, and guided by techniques
and results from random matrix theory, Conrey, Farmer,
Keating, R., and Snaith conjectured:

For positive integer k , and any ε > 0,∫ T

0
|ζ(1/2 + it)|2kdt =

∫ T

0
Pk
(
log t

2π

)
dt + O(T 1/2+ε),

where Pk is the polynomial of degree k2 given implicitly by
the 2k -fold residue...
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Pk (x) =
(−1)k

k !2
1

(2πi)2k

∮
· · ·
∮

F (z1, . . . , z2k )∆2(z1, . . . , z2k )
2k∏
i=1

z2k
i

×e
x
2
Pk

i=1 zi−zi+k dz1 . . . dz2k ,

with the path of integration over small circles about zi = 0.



F (z1, . . . , z2k ) = Ak (z1, . . . , z2k )
k∏

i=1

k∏
j=1

ζ(1 + zi − zj+k ),

and Ak is the product over primes:

Ak (z1, . . . , z2k )

=
∏

p

k∏
i,j=1

(1− p−1−zi+zk+j )

×
∫ 1

0

k∏
j=1

(
1− e(θ)

p
1
2 +zj

)−1

×

(
1− e(−θ)

p
1
2−zk+j

)−1

dθ.

Here e(θ) = exp(2πiθ).
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Example, k = 1
In this case, A1(z1, z2) = 1

P1(x) = − 1
(2πi)2

∮
· · ·
∮
ζ(1 + z1 − z2)(z2 − z1)2

z2
1 z2

2
e

x
2 (z1−z2) dz1dz2

= x + 2γ

by extracting the coefficient of z1z2 of the numerator.
So, the full asymptotics of the second moment is given by:∫ T

0
(log(t/(2π)) + 2γ)dt = T log(T/(2π)) + T (2γ − 1)

consistent with Ingham.
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Example, k = 2
In this case, A2(z1, z2, z3, z4) = ζ(2 + z1 + z2 − z3 − z4)−1,
and computing the residue gives:

P2(x) =
1

2π2
x4 +

8

π4

“
γπ

2 − 3ζ′(2)
”

x3

+
6

π6

“
−48γζ′(2)π2 − 12ζ′′(2)π2 + 7γ2

π
4 + 144ζ′(2)2 − 2 γ1π

4
”

x2

+
12

π8

„
6γ3

π
6 − 84γ2

ζ
′(2)π4 + 24γ1ζ

′(2)π4 − 1728ζ′(2)3 + 576γζ′(2)2
π

2

+ 288ζ′(2)ζ′′(2)π2 − 8ζ′′′(2)π4 − 10γ1γπ
6 − γ2π

6 − 48γζ′′(2)π4
«

x

+
4

π10

„
−12ζ′′′′(2)π6 + 36γ2ζ

′(2)π6 + 9γ4
π

8 + 21γ2
1π

8 + 432ζ′′(2)2
π

4

+ 3456γζ′(2)ζ′′(2)π4 + 3024γ2
ζ
′(2)2

π
4 − 36γ2

γ1π
8 − 252γ2

ζ
′′(2)π6

+ 3γγ2π
8 + 72γ1ζ

′′(2)π6 + 360γ1γζ
′(2)π6 − 216γ3

ζ
′(2)π6

− 864γ1ζ
′(2)2

π
4 + 5γ3π

8 + 576ζ′(2)ζ′′′(2)π4 − 20736γζ′(2)3
π

2

− 15552ζ′′(2)ζ′(2)2
π

2 − 96γζ′′′(2)π6 + 62208ζ′(2)4
«
,

consistent with Heath-Brown.
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We developed formulas and algorithms to compute the
coefficients of Pk (x) and found, for example,

P3(x) = 0.000005708527034652788398376841445252313 x9

+ 0.00040502133088411440331215332025984 x8

+ 0.011072455215246998350410400826667 x7

+ 0.14840073080150272680851401518774 x6

+ 1.0459251779054883439385323798059 x5

+ 3.984385094823534724747964073429 x4

+ 8.60731914578120675614834763629 x3

+ 10.274330830703446134183009522 x2

+ 6.59391302064975810465713392 x
+ 0.9165155076378930590178543.

In our paper we got up to k = 7. With my Master’s student,
Shuntaro Yamagishi, we extended our tables to k = 13.
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As k grows, the leading coefficients become very small.
Because we are evaluating this as a polynomial in log t/(2π),
which increases slowly, the lower terms are very relevant for
checking the conjecture.
Hiary-R. have worked out the uniform asymptotics of these
coefficients, in the case of rmt, and partially here. Yamagishi is
considering the same problem for orthogonal and unitary
symplectic moment polynomials.
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For example, expand the Keating Snatih U(N) moment
polynomial:

k−1∏
j=0

(
j!

(j + k)!

k−1∏
i=0

(N + i + j + 1)

)
=

k2∑
r=0

cr (k)Nk2−r ,

and let

µ :=
k∑

j=1

j
j + 1

+
2k∑

j=k+1

2k − j
j + 1

= k log 4− log(k/2) + 1/2− γ + O(1/k) ,

Then, Hiary-R. prove that there exists ρ > 0 such that, for all k
sufficiently large, a maximal cr (k) occurs for some

r ∈ [k2 − µ− ρ log(k)2/k , k2 − µ+ 1 + ρ log(k)2/k ] , (1)

and no maximal cr (k) occurs outside of that interval.
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Agreement is to about 7 decimal places out of 9. Joint with
Shuntaro Yamagishi (Master’s thesis).
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Moments of L(1/2, χd )
Conjecture (Keating-Snaith):

1
|D(X )|

∑
d∈D(X)

L(1
2 , χd )k ∼ ak

k∏
j=1

j!
(2j)!

log(X )k(k+1)/2

where

ak =
∏

p

(1− 1
p )

k(k+1)
2

1 + 1
p

(
(1− 1√

p )−k + (1 + 1√
p )−k

2
+

1
p

)
.

Proved by Jutila for k = 1,2 and Soundararajan for k = 3.
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Let A ∈ USp(2N) with eigenvalues e±iθ1 , . . . ,e±iθN .
Characteristic polynomial, evaluated at z = 1

N∏
1

|1− exp(iθj)|2.

k th moment, over USp(2N), is asymptotically, for k ∈ Z:

k∏
j=1

j!
(2j)!

(2N)k(k+1)/2

Density 2N/(2π) versus log |d |/(2π).
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Let D±(X ) denote the sets of positive (respectively negative)
fundamental discriminants with |d | ≤ X . Conjecture (CFKRS):

∑
d∈D±(X)

L(1
2 , χd )k =

3
π2

∫ X

0
Q±(k , log |t |)dt + o(X )

To define Q±, let a = 0 if d > 0 and a = 1 if d < 0, and

X (s,a) = πs− 1
2

Γ(1+a−s
2 )

Γ(s+a
2 )

,

G(z1, . . . , zk ) = Ak (z1, . . . , zk )
k∏

j=1

X (1
2+zj ,a)−

1
2
∏

1≤i≤j≤k

ζ(1+zi+zj),
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and Ak is the Euler product, absolutely convergent for
|<zj | < 1

2 , defined by

Ak (z1, . . . , zk ) =
∏

p

∏
1≤i≤j≤k

(
1− 1

p1+zi+zj

)

×

1
2

 k∏
j=1

(
1− 1

p
1
2 +zj

)−1

+
k∏

j=1

(
1 +

1

p
1
2 +zj

)−1
+

1
p


×
(

1 +
1
p

)−1

.

Q±(k , x) is the polynomial of degree k(k + 1)/2 given by the
k -fold residue

(−1)
k(k−1)

2 2k

k !

1
(2πi)k

∮
· · ·
∮

G(z1, . . . , zk )∆(z2
1 , . . . , z

2
k )2

k∏
j=1

z2k−1
j

e
x
2
Pk

j=1 zj dz1 . . . dzk ,

Rishikesh-R. have worked out formulas for the coefficients of
Q±(k , x). (CFKRS did so for zeta moment polynomials).
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Diaconu, Goldfeld, and Hoffstein conjectured that further lower
order terms exists for k ∈ Z, k ≥ 3. For k = 3 they conjecture
an additional term of the form bx3/4. Qiao Zhang computed
b = −.07 for d > 0, and b = −.14 for d < 0.
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d > 0. log log plot of abs(average of the remainder)



-3e+08

-2e+08

-1e+08

 0

 1e+08

 2e+08

 3e+08

 4e+08

 0  1e+10  2e+10  3e+10  4e+10  5e+10re
d:

 M
om

en
t(

X
)-

C
on

je
ct

ur
e(

X
),

 g
re

en
: m

ea
n 

up
 to

 X
, b

lu
e:

 -
.0

7 
4/

7x
^{

3/
4}

X

k=3

Red: moment data − CFKRS asymptotics. Green: Running
average of Red. Blue: Zhang. d < 0.



-1e+07

-5e+06

 0

 5e+06

 1e+07

 0  1e+10  2e+10  3e+10  4e+10  5e+10

Z
oo

m
 o

f p
re

vi
ou

s 
pl

ot

X

k=3

Red: moment data − CFKRS asymptotics. Green: Running
average of Red. Blue: Zhang. d < 0. Zoom.



d < 0. log log plot of abs(average of the remainder)



Lower terms for the moments of elliptic curve L-functions.
Let E be an elliptic curve over Q and let it’s L-function be

LE (s) =
∞∑

n=1

an

ns =
∏
p|Q

(
1− app−s)−1∏

p-Q

(
1− app−s + p1−2s

)−1

=
∏

p

Lp(1/ps), <(s) > 3/2.

Q is the conductor of E , and ap = p + 1−#E(Fp).



LE (s) has analytic continuation to C and satisfies a
functional equation of the form(

2π√
Q

)−s

Γ(s)LE (s) = wE

(
2π√

Q

)s−2

Γ(2− s)LE (2− s),

with wE = ±1.



Let

LE (s, χd ) =
∞∑

n=1

anχd (n)

ns

be the L-function of the elliptic curve Ed , the quadratic twist
of E by the fundamental discriminant d . If (d ,Q) = 1, then
LE (s, χd ) satisfies the functional equation(

2π√
Q|d |

)−s

Γ(s)LE (s, χd )

= χd (−Q)wE

(
2π√
Q|d |

)s−2

Γ(2− s)LE (2− s, χd ).

(2)

Focus on even functional equation: χd (−Q)wE = 1.
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Let
S(X ) = {|d | ≤ X ;χd (−Q)wE = 1}.

For a fixed prime q - Q, let

Rq(X ) =

∑
d∈S(X)

LE (1,χd )=0
χd (q)=1

1

∑
d∈S(X)

LE (1,χd )=0
χd (q)=−1

1

be the ratio of the number of vanishings of LE (1, χd ) sorted
according to whether χd (q) = 1 or −1.
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Let

Rq =

(
q + 1− aq

q + 1 + aq

)1/2

.

A conjecture (ckrs 2000) asserts that, for q - Q,

lim
X→∞

Rq(X ) = Rq.

The power 1/2 comes from the pole at k = −1/2 in the
moments, as predicted by the moments in SO(2N). We
can also restrict to subsets such as d < 0 or d > 0 (the
arithmetic factor is the same for these two families).
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arithmetic factor is the same for these two families).



Using the full asymptotics for the moments in both families, we
can derive (conjecturally) more terms for Rq(X ):

Rq(X ) =

(
q + 1− aq

q + 1 + aq

)1/2(
1−

αq

log X
+ O(log(X )−2)

)
where

αq =
3
2

aq log(q)(q − 1)

(q + 1− aq)(q + 1 + aq)

Furthermore, when aq = 0 the full asymptotics for both
coincide and this explains why we then seem to get

Rq(X ) = 1 + O(X−1/2+ε)
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)
where
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3
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aq log(q)(q − 1)

(q + 1− aq)(q + 1 + aq)

Furthermore, when aq = 0 the full asymptotics for both
coincide and this explains why we then seem to get

Rq(X ) = 1 + O(X−1/2+ε)
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A plot for one hundred data sets. q, horizontal, versus
Rq(108)− Rq, vertical.
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Taking into account the next term in the asymptotics.
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Left to right, top to bottom: n = −20,−9,−6,−3,−1, 3, 6, 9, 20. Values of
Rq(108)− Rq , 2 ≤ q < 500, for the subset of our elliptic curves satisfying
aq = n. The blank white areas on the left reflect Hasse’s theorem.
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Taking into account the next term.
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