Disquisitiones*Arithmeticae (1801)

Binary quadratic form:

Oz, y) = az? + bzy +cy? (a,b,¢ € Z)

SL,(Z) acts on the set of binary quadratic
forms (by linear substitution).

Disc(Q) = b® — 4ac. (SLo-invariant)

Theorem 1 (Gauss) The set of SL»(Z)-equiv-
alence classes of primitive integral binary quad-
ratic forms of discriminant D has a natural
group structure. { == NCI(S))

(This is “Gauss composition”)



Orbit problems

Gauss composition may be stated as the solu-
tion to an orbit problem:

Theorem 2 SL,(Z) \ Sym2(Z2) &= (s,1),
where S is a quadratic ring, and I is an ideal
class.

In general we may consider any algebraic group

G and any rational representation V. The ques-
tion then arises:

Question 2: For what pairs (G,V) does

G(Z)\V(Z)

parametrize rings, modules, maps, etc.?



Where to look for more such representations?

Key observation:

Over C, the action of GLo on the space of
binary quadratic forms/C has just one orbit.

Definition. A pair (G,V) such that G has
just one (Zariski open) orbit on V is called a
prehomogeneous vector space.

Sato and Kimura (1977) gave a classification
of all PVS's. (There are 36 of them!)

Wright and Yukie (1990) showed that orbits of
PVS’'s over fields k often correspond to field
extensions of k.

Goal: Understand Gy \ Vy for prehomogeneous
vector spaces (G, V).



In modern language, the group described in
Theorem 1 is the narrow class group of the
unigue quadratic order of discriminant D.

Two hundred years later, Gauss composition
remains one of the best methods for under-
standing class groups of quadratic fields, and
is still the best way of computing them.

However, the method only applies to orders in
quadratic fields.

Question 1: Do there exist analogous com-
position laws on other spaces of forms, which
could be used to shed light on the structure of
higher degree fields?




What about binary cubic forms?

I learned of the following theorem from
Wee-Teck Gan in 1999:

Theorem 3 (Delone—Faddeev/Gan—Gross—Savin)

The GL»(Z)-orbits on integral binary cubic forms
are in canonical bijection with cubic rings.

. To az3 4 by 4-exy? + dy3, one associates the
- -cubic ring having Z-basis (1,w,0) and multipli-

cation table

wl = —ad
w2 = —ac + bw — ab
62 = —bd+ dw — cb.

Basis-free way to get a binary cubic form from
a cubic ring:

Given a cubic ring R, the index form 1 A x A x?
is a well-defined cubic form on R/Z.



Gauss’'s Law Revisited

What would happen if we put numbers on the
corners of a cube?

Can slice the cube into pairs of 2 x 2 matrices
in three different ways.:

a b ] e ]
My = c d , N1= g£
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- Gauss’s Law Revisited (cont'd)

Using these slicings, we can construct three
quadratic forms:

Q1(z,y) = —Det(Miz — Nyy).
Q2(z,y) = —Det(Moz — Noy).

Q3(z,y) = —Det(Mzz — N3y).

The Cube Law. For any cube A, the sum of
@1, Q2, Q3 is zero.

(Note the analogy with elliptic curves.)

Theorem 3 This is Gauss composition!



Com

POsition of Cubes
——————=1 OT Cubes

Gauss composition:
(S,1)o (S, 1) = (S, 11").
Cube COMposition:
————==1POsIition

(S, (11, I, 13))o(s, (17, 13, 13)) = (S, (1111, I, 1, I313)).



Composition of binary cubic forms

Impose symmetry:

/
b——¢C PSR, a:l:'?)}‘l‘ 355,523} + 303792 + dy3

IS a .triply—symmetric cube.

722 7% 272 X sym372.
cube binary cubic form
Theorem 6 SLo(Z) \Sym3(Z?) &% (S,1),

where S is a quadratic ring, and I is an ideal
class of order 3. av I .



Composition of pairs of binary quadratic forms

Impose double symmetry:

bl (aw?42baytey?, de2 4 2exy-kf42)

is a doubly-symmetric cube.

72 972 272 Y 72 g sym272,
cube pair of b.qg.f.’'s
Theorem 7 SL(Z)2\Z2@Sym?2(Z2) &= (S, 1),

where S is a quadratic ring, and I is an ideal
class.



The discussions above illustrate that once we
have a law of composition on the space of
cubes, then various other of its “invariant and
covariant spaces”’ also inherit a law of compo-
sition: Gauss composition is indeed just one of
these.

Operations

1. symmetrization (“=")

2. skew-symmetrization (“®")

3. symplectization (“@" 4+ symp. struct.)
4. hermitianization (galois conjugate)

5. dualization (dual under class field theory)
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Applications.

1. Computational Applications

Work of Shanks, Belabas, Morra, others...

2. Theory of prehomogeneous vector spaces

Work of Sato, Shintani, Datskovsky, Wright,

-Yukie, Taniguchi, others...
*Therne

- 3. Exceptional groups and modular forms -

Work of Gross, Gan-Gross-Savin, Lucianovic,
Weissman, Volpato, others...

4. Noncommutative algebras

Work of Elkies, Gross, Lucianovic, Krutelevich,
others...

5. Density theorems
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