A toy implementation of ECPP in Sage

Yannick Méheut

Agence Nationale de la Sécurité des Systèmes d'Informations
Laboratoire de Cryptographie

September 19, 2013
Plan

1 Introduction

2 Proving a number’s primality
 - Compositeness tests
 - Primality tests

3 Author’s implementation
 - Objectives
 - Specifications
 - Encountered problems
 - Demonstration

4 Conclusion
 - Results
 - Summary
Introduction

Presentation of the internship

Origin of the internship

Context Prime numbers are intensively used in asymmetric cryptography (encryption, signature, ...). The ECPP algorithm is, for large numbers, the fastest way to prove a number’s primality.

Observation There’s no free (as in speech), efficient implementation of this algorithm.

Goal Study, implement and improve the ECPP algorithm.

Supervisors Jean-Pierre Flori, Jérôme Plût, Jean-René Reinhard

Internship duration 6 months (March 25 → September 25)
Plan

1. Introduction

2. Proving a number’s primality
 - Compositeness tests
 - Primality tests

3. Author’s implementation
 - Objectives
 - Specifications
 - Encountered problems
 - Demonstration

4. Conclusion
 - Results
 - Summary
Compositeness tests

Principle
\[\mathcal{P}(N) \implies N \text{ composite} \]

Properties
- Very fast: \(\tilde{O}(\log^2 N) \)
- We’re not sure the number is prime

Example: Miller-Rabin test

Primality tests

Principle
\[\mathcal{P}(N) \implies N \text{ prime} \]

Properties
- Slower: \(\tilde{O}(\log^5 N) \)
- A number declared prime is inevitably so

Examples: \(N - 1 \), ECPP
Differences between compositeness and primality tests

<table>
<thead>
<tr>
<th>Compositeness tests</th>
<th>Primality tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principle</td>
<td>(\mathcal{P}(N) \implies N \text{ composite})</td>
</tr>
<tr>
<td>Properties</td>
<td>Very fast: (\tilde{O}(\log^2 N))</td>
</tr>
<tr>
<td></td>
<td>We’re not sure the number is prime</td>
</tr>
<tr>
<td>Example: Miller-Rabin test</td>
<td>Examples: (N - 1), ECPP</td>
</tr>
</tbody>
</table>
Theorem (Lucas – 1876)

Let $N \in \mathbb{N}$. Let $g \in (\mathbb{Z}/N\mathbb{Z})^\times$. If

- $g^{N-1} \equiv 1 \mod N$;
- for every prime p dividing $N - 1$, $g^{\frac{N-1}{p}} \not\equiv 1 \mod N$;

then,

- g has a multiplicative order of $N - 1$ in $(\mathbb{Z}/N\mathbb{Z})^\times$;
- the cardinality of the multiplicative group is therefore $N - 1$;
- N is therefore a prime number.
Theorem (Lucas – 1876)

Let $N \in \mathbb{N}$. Let $g \in (\mathbb{Z}/N\mathbb{Z})^\times$. If

- $g^{N-1} \equiv 1 \mod N$;
- for every prime p dividing $N - 1$, $g^{\frac{N-1}{p}} \not\equiv 1 \mod N$;

then,

- g has a multiplicative order of $N - 1$ in $(\mathbb{Z}/N\mathbb{Z})^\times$;
- the cardinality of the multiplicative group is therefore $N - 1$;
- N is therefore a prime number.

The Pocklington theorem allows us to verify the above theorem for a single, large enough, divisor p.
Definition (Smooth number)

A number \(s \in \mathbb{N} \) is said **\(B \)-smooth** if, and only if none of its prime factors is greater than \(B \).

Definition (Probably factored number)

A number \(m \in \mathbb{N} \) is said **probably factored** if, and only if it can be written as:

\[
m = s \times N'
\]

where \(s \) is a \(B \)-smooth number for some \(B \), and \(N' \) is probably prime.
In practice
We want $N - 1$ to be probably factored. We then check the previous theorem for p dividing s, then for $p = N'$. Then, we have to check whether N' is indeed prime.

Creation of a certificate
Smoothness bound: $B = 3$
Theorem (Goldwasser-Killian – 1986)

Let $N \in \mathbb{N}$. Let E be an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$, $G \in E$ and $N - 2\sqrt{N} \leq m \leq N + 2\sqrt{N}$ an integer. If

- $[m]G = O_E$;
- for every prime p dividing m, $\left[\frac{m}{p} \right] G \neq O_E$;

then G has an order of m in E. The cardinality of the curve is therefore m, and N is prime.
Theorem (Goldwasser-Killian – 1986)

Let \(N \in \mathbb{N} \). Let \(\mathcal{E} \) be an elliptic curve over \(\mathbb{Z}/N\mathbb{Z} \), \(G \in \mathcal{E} \) and \(N - 2\sqrt{N} \leq m \leq N + 2\sqrt{N} \) an integer. If

- \([m]G = \mathcal{O}_\mathcal{E}\);

- for every prime \(p \) dividing \(m \), \([m/p]G \neq \mathcal{O}_\mathcal{E}\);

then \(G \) has an order of \(m \) in \(\mathcal{E} \). The cardinality of the curve is therefore \(m \), and \(N \) is prime.

There is a version of this theorem analog to the Pocklington’s theorem.
1: repeat
2: Generate an elliptic curve \mathcal{E} and compute its cardinality m over $\mathbb{Z}/N\mathbb{Z}$.
3: until m is probably factored
4: Write $m = s \times N'$ where s is smooth and N' is probably prime.
5: if we find G verifying the conditions of the Goldwasser-Killian’s theorem then
6: N is prime only if N' is. We verify the primality of N' by the same way.
7: else
8: N is composite.
9: end if
Possible improvement

Computing the cardinality of an elliptic curve: Schoof’s algorithm
Complexity of $O(\log^5 N) \implies$ ECPP’s complexity is $O(\log^6 N)$.
Possible improvement

Computing the cardinality of an elliptic curve: Schoof’s algorithm

Complexity of $O(\log^5 N) \implies$ ECPP’s complexity is $O(\log^6 N)$.

Using complex multiplication (Atkin-Morain)

- allows us to construct elliptic curves over $\mathbb{Z}/N\mathbb{Z}$ with predictable cardinalities.
- possible using parameters D compatible with N: $4N = A^2 + DB^2$ with $A, B \in \mathbb{Z}$
- we can construct an elliptic curve with cardinality $m = N + 1 - A$

Idea: we try different D until we find a probably factored m

\implies ECPP’s complexity is $\tilde{O}(\log^5 N)$.
ECPP: second version (Atkin-Morain)

1: \(k \leftarrow 0; N_0 \leftarrow N \)

2: \while \(N_k > B \) \do

3: \for \(-D_j\) fundamental discriminant \do

4: \if \(4N_k = A_j^2 + D_j B_j^2 \) \and \(m_j = N_k + 1 - A_j \) is probably factored \then

5: Write \(m_j = s \times N' \)

6: \(D^k \leftarrow D_j; m^k \leftarrow m_j \)

7: Stock \(\{ k, N_k, D^k, m^k \} \)

8: \(k \leftarrow k + 1; N_k \leftarrow N' \)

9: Return to step 2

10: \end if

11: \end for

12: \end while

13: \for i=k-1 \to 0 \do

14: Compute the equation of the elliptic curve \(E_i \), of cardinality \(m^i \)

15: \if we find \(G \) verifying the conditions of the Goldwasser-Killian's theorem \then

16: Continue \(\{ N_i \text{ is prime} \} \)

17: \else

18: \(k \leftarrow i - 1 \)

19: Return to step 2 \(\{ N_i \text{ is composite} \} \)

20: \end if

21: \end for
Proving a number’s primality

Primality tests

ECPP: second version (Atkin-Morain)

1: \(k \leftarrow 0; N_0 \leftarrow N \)

2: while \(N_k > B \) do
3: for \(-D_j \) fundamental discriminant do
4: if \(4N_k = A_j^2 + D_j B_j^2 \) and \(m_j = N_k + 1 - A_j \) is probably factored then
5: Write \(m_j = s \times N' \)
6: \(D^k \leftarrow D_j; m^k \leftarrow m_j \)
7: Stock \(\{k, N_k, D^k, m^k\} \)
8: \(k \leftarrow k + 1; N_k \leftarrow N' \)
9: Return to step 2
10: end if
11: end for
12: end while
13: for \(i=k-1 \) to 0 do
14: Compute the equation of the elliptic curve \(\mathcal{E}_i \), of cardinality \(m^i \)
15: if we find \(G \) verifying the conditions of the Goldwasser-Killian’s theorem then
16: Continue \(\{N_i \text{ is prime}\} \)
17: else
18: \(k \leftarrow i - 1 \)
19: Return to step 2 \(\{N_i \text{ is composite}\} \)
20: end if
21: end for
Plan

1. Introduction

2. Proving a number’s primality
 - Compositeness tests
 - Primality tests

3. Author’s implementation
 - Objectives
 - Specifications
 - Encountered problems
 - Demonstration

4. Conclusion
 - Results
 - Summary
Objectives of the implementation

- Use of the Sage mathematical library (Python)
- Compatibility with the closed-source program Primo
- Modularity of the implementation
- Parallelization of the implementation
Some numbers

9 modified files

- module_list.py
- rings/arith.py
- schemes/elliptic_curves/constructor.py
- libs/pari/decl.pxi
- libs/pari/gen.pxd
- quadratic_forms/
 quadratic_form__local_representation_conditions.py
- rings/finite_rings/integer_mod.pxd
- rings/finite_rings/integer_mod.pyx
- rings/integer.pyx
Some numbers

9 added files

- sage/quadratic_forms/first_fundamental_discriminants.py
- sage/quadratic_forms/fundamental_discriminants_generator.py
- sage/quadratic_forms/quadratic_form__fundamental_discriminants.pyx
- sage/rings/elliptic_curve_primality_proving.py
- sage/rings/polynomial/polynomial_root_finding.pyx
- sage/schemes/elliptic_curves/basic_elliptic_curve.pxd
- sage/schemes/elliptic_curves/basic_elliptic_curve.pyx
- sage/schemes/elliptic_curves/basic_point.pxd
- sage/schemes/elliptic_curves/basic_point.pyx

2,614 lines
Dependencies

Patches

- Trac #14817: efficient copy of Pari’s objects
- Trac #14818: access to Pari finite field functions
- Trac #14832: construction of polynomials over finite fields
- Trac #14833: construction of finite fields using irreducible polynomials
- Trac #12142: speed up Pari finite field operations
- Trac #11802: generation of Lucas sequences modulo an integer

Libraries

- GMP
- Pari
- CM
Dependencies

Patches

- Trac #14817: efficient copy of Pari’s objects ✓
- Trac #14818: access to Pari finite field functions ✓
- Trac #14832: construction of polynomials over finite fields ✓
- Trac #14833: construction of finite fields using irreducible polynomials ✓
- Trac #12142: speed up Pari finite field operations ✓
- Trac #11802: generation of Lucas sequences modulo an integer

Libraries

- GMP
- Pari
- CM
Dependencies

Patches

- Trac #14817: efficient copy of Pari’s objects ✓
- Trac #14818: access to Pari finite field functions ✓
- Trac #14832: construction of polynomials over finite fields ✓
- Trac #14833: construction of finite fields using irreducible polynomials ✓
- Trac #12142: speed up Pari finite field operations ✓
- Trac #11802: generation of Lucas sequences modulo an integer

Libraries

- GMP
- Pari
- CM (modified)
Cornacchia’s algorithm

Solve \(N = A^2 + DB^2 \) with \(N, D \) coprime

1: Find \(x_0 \) a solution of \(x^2 \equiv -D \mod N \) with \(N > x_0 > \frac{N}{2} \)
2: Develop \(\frac{N}{x_0} \) as a continued fraction:

\[
N = q_0 x_0 + q_1 \\
x_0 = q_1 x_1 + q_2 \\
\vdots \\
x_r = q_r x_{r+1} + q_{r+2}
\]

and stop when \(x_r^2 < N \leq x_{r-1}^2 \)

3: Let \(A = x_r \) and \(B = \sqrt{\frac{N - x_r^2}{D}} \)
4: if \(B \) is not an integer then
5: \(N \) can’t be written as \(A^2 + DB^2 \)
6: else
7: Return \((A, B)\)
8: end if
Cornacchia’s algorithm

Solve $N = A^2 + DB^2$ **with** N, D **coprime**

1. Find x_0 a solution of $x^2 \equiv -D \pmod{N}$ with $N > x_0 > \frac{N}{2}$
2. Develop $\frac{N}{x_0}$ as a continued fraction:

 \[\begin{align*}
 N &= q_0 x_0 + q_1 \\
 x_0 &= q_1 x_1 + q_2 \\
 \vdots \\
 x_r &= q_{r+1} x_{r+1} + q_{r+2}
 \end{align*} \]

 and stop when $x_r^2 < N \leq x_{r-1}^2$
3. Let $A = x_r$ and $B = \sqrt{\frac{N-x_r^2}{D}}$
4. if B is not an integer then
5. N can’t be written as $A^2 + DB^2$
6. else
7. Return (A, B)
8. end if
Figure: Time spent in Cornacchia’s algorithm during the downrun phase: Python version (left) and Cython version (right)
Parallelization

N_i

Try with D_1

Try with D_2

Not suitable

Try with D_3

Suitable

Try with D_4

Not suitable

Try with D_5
Parallelization

Try with D_1

Try with D_2

Try with D_3

N_i
Parallelization

Try with D_1

Try with D_2

Try with D_3

Not suitable

N_i
Parallelization

Try with D_2

Try with D_3

Try with D_4

Try with D_5

Not suitable

Suitable

N_i
Parallelization

Try with D_4

Try with D_2

Try with D_3

Not suitable

N_i
Parallelization

N_i

Try with D_4

Try with D_5

Try with D_3
Parallelization

Try with D_1

Try with D_2

Try with D_3

Try with D_4

Try with D_5

$N_i + 1$

Suitable

Author’s implementation

Encountered problems

Y. Méheut (ANSSI/SDE/ST/LCR)

ECPP

2013-09-19 16 / 21
Parallelization

N_{i+1}
Parallelization

First solution
Use of the Python threading library
Parallelization

First solution
Use of the Python threading library

Problem
Python has a GlobalInterpreterLock

Second solution
Use of the Python multiprocessing library
Sage verifies the primality of (almost) every parameter

Necessary operations
Building elliptic curves over $\mathbb{Z}/N\mathbb{Z}$
Computing square roots modulo N \Rightarrow Building $\mathbb{Z}/N\mathbb{Z}$
Sage verifies the primality of (almost) every parameter

Necessary operations
- Building elliptic curves over $\mathbb{Z}/N\mathbb{Z}$
- Computing square roots modulo N \Rightarrow Building $\mathbb{Z}/N\mathbb{Z}$

- Sage will prove the primality of N

Solution: calling C libraries, creating a BasicEllipticCurve class
Demonstration of Sage ECPP
Plan

1. Introduction

2. Proving a number’s primality
 - Compositeness tests
 - Primality tests

3. Author’s implementation
 - Objectives
 - Specifications
 - Encountered problems
 - Demonstration

4. Conclusion
 - Results
 - Summary
Comparison with existing implementations

![Graph showing comparison between different implementations]

- **Theoretical complexity**
- **ECPP [F. Morain (2001)]**
Comparison with existing implementations

Theoretical complexity

- ECPP [F. Morain (2001)]
- Primo (2013)
Comparison with existing implementations

Theoretical complexity

- GMP ECPP (July 2013)
- ECPP [F. Morain (2001)]
- Primo (2013)
Comparison with existing implementations

![Graph showing the comparison between different implementations of ECPP algorithms. The x-axis represents the size of the integer (bits), and the y-axis represents the time (s). The graph includes lines for GMP ECPP (July 2013), ECPP [F. Morain (2001)], Perl ECPP (2013), and Primo (2013). The theoretical complexity is also indicated by a shaded area.](attachment:image.png)
Comparison with existing implementations

![Graph comparing theoretical complexity with existing implementations including GMP ECPP, ECPP [F. Morain (2001)], Perl ECPP, Sage ECPP, and Primo (2013).](chart.png)
Summary of the internship

Contributions

- Free, modular implementation of the ECPP algorithm
- The most efficient free implementations (parallelization, rewriting in Cython of critical code, calling of C libraries)
- Compatibility with the closed-source program Primo
- Integration in Sage (work in progress)
Summary of the internship

Contributions

- Free, modular implementation of the ECPP algorithm
- The most efficient free implementations (parallelization, rewriting in Cython of critical code, calling of C libraries)
- Compatibility with the closed-source program Primo
- Integration in Sage (work in progress)

Possible improvements

- Implementation of FastECPP
- Modifying the complex multiplication method
- Using a network of machines
- Port to C