The Hairer - Wanner DAE

Simplifying a polynomial DAE (an implicit ODE ?) to get the variety of the constraints and the underlying ODE
$>$ restart;
with (DifferentialAlgebra0):
$>\mathrm{R}:=$ DifferentialRing (derivations $=[t]$, blocks $=[[\mathrm{y}, \mathrm{x}, \mathrm{s}, \mathrm{c}, \mathrm{z}]$, $[\mathrm{a}, \mathrm{b}]]$, parameters $=[\mathrm{a}, \mathrm{b}]$, notation = diff);

$$
\begin{equation*}
R:=\text { differential_ring } \tag{1}
\end{equation*}
$$

Initially, a steering wheel story featuring $x(t), y(t)$ and $z(t)$
$s(t)$ encodes $\sin (b * z(t))$
c(t) encodes cos (b*z(t))
$>$ syst $:=\left[x[t]=a^{*} y+s, y[t]=2^{*} a^{*} x+c, x^{\wedge} 2+y^{\wedge} 2=1\right.$,

$$
\begin{align*}
& \left.\left.\mathbf{s}[\mathbf{t}]=\mathbf{b}^{\star} \mathbf{z} \mathbf{[t}\right]^{\star} \mathbf{c}, \mathbf{s}^{\wedge} \mathbf{2}+\mathbf{c}^{\wedge} \mathbf{2}=\mathbf{1}\right] ; \\
& \quad \text { syst }:=\left[x_{t}=a y+s, y_{t}=2 a x+c, x^{2}+y^{2}=1, s_{t}=b z_{t} c, s^{2}+c^{2}=1\right] \tag{2}
\end{align*}
$$

EThe same system, in usual notation
[> syst := NormalForm (syst, R, input = jet);

$$
\begin{align*}
s y s t: & =\left[\frac{\mathrm{d}}{\mathrm{~d} t} x(t)-y(t) a-s(t), \frac{\mathrm{d}}{\mathrm{~d} t} y(t)-2 x(t) a-c(t), y(t)^{2}+x(t)^{2}-1, \frac{\mathrm{~d}}{\mathrm{~d} t} s(t)\right. \tag{3}\\
& \left.-\left(\frac{\mathrm{d}}{\mathrm{~d} t} z(t)\right) c(t) b, s(t)^{2}+c(t)^{2}-1\right]
\end{align*}
$$

One tunes the regular differential chain (= characteristic set) we are looking for.
One computes the "general" solution only
> ideal := RosenfeldGroebner (syst, R, basefield = field (generators = [a, b]), attributes = [differential, primitive], singsol=none);

$$
\begin{equation*}
\text { ideal }:=[\text { regular_differential_chain }] \tag{4}
\end{equation*}
$$

$=>$ Equations (ideal[1]);
$\left[s(t)^{2}+c(t)^{2}-1,9 x(t)^{4} a^{2}+6 x(t)^{3} c(t) a-9 x(t)^{2} a^{2}+x(t)^{2}-6 x(t) c(t) a-c(t)^{2}\right.$,
$3 y(t) x(t) a+y(t) c(t)+x(t) s(t), 3\left(\frac{\mathrm{~d}}{\mathrm{~d} t} z(t)\right) x(t)^{3} c(t) a b+\left(\frac{\mathrm{d}}{\mathrm{d} t} z(t)\right) x(t)^{2} b$
$+12 x(t)^{3} c(t) a^{2}+9 x(t)^{2} c(t)^{2} a+18 x(t)^{2} a^{3}-2 x(t)^{2} a+9 x(t) c(t) a^{2}+x(t) c(t)$
$\left.+c(t)^{2} a, \frac{\mathrm{~d}}{\mathrm{~d} t} c(t)+\left(\frac{\mathrm{d}}{\mathrm{d} t} z(t)\right) s(t) b\right]$
EThe equations of order 0 give the variety of the constraints

- $>$ Equations (ideal[1], order=0);

$$
\begin{align*}
& {\left[s(t)^{2}+c(t)^{2}-1,9 x(t)^{4} a^{2}+6 x(t)^{3} c(t) a-9 x(t)^{2} a^{2}+x(t)^{2}-6 x(t) c(t) a-c(t)^{2},\right.} \tag{6}\\
& \quad 3 y(t) x(t) a+y(t) c(t)+x(t) s(t)]
\end{align*}
$$

EHere is the missing equation, in order to build the underlying ODE
[$>$ Equations (ideal[1], solved, leader=diff $(\mathrm{z}(\mathrm{t}), \mathrm{t})$);
$\left[\frac{\mathrm{d}}{\mathrm{d} t} z(t)=-\frac{1}{3 x(t)^{3} c(t) a b+x(t)^{2} b}\left(12 x(t)^{3} c(t) a^{2}+9 x(t)^{2} c(t)^{2} a+18 x(t)^{2} a^{3}\right.\right.$

$$
\left.\left[-2 x(t)^{2} a+9 x(t) c(t) a^{2}+x(t) c(t)+c(t)^{2} a\right)\right]
$$

