The I/O relation

EA worksheet motivated by a parameters estimation problem
> restart;
with (DifferentialAlgebra0);
[Attributes, BelongsTo, Coeffs, DeltaPolynomial, DifferentialPrem, DifferentialRing,
Differentiate, Display, Equations, EssentialComponents, FactorDerivative, FieldElement, Indets, Inequations, Initial, IsConstant, IsDifferentialRing, IsOrthonomic, IsReduced, IsRegularDifferentialChain, LeadingCoefficient, LeadingDerivative, LeadingRank, MaxRankElement, MinRankElement, NormalForm, Notation, Parameters, Pardi, PowerSeriesSolution, PowerSeriesSystem, PreparationEquation, PretendRegularDifferentialChain, Ranking, RatBilge, ReducedForm, RosenfeldGroebner, Separant, SortByRank, Tail]
[A compartmental model $x 1$ is observed while $x 2$ is not.
$>$ params $:=[k[e], \mathrm{V}[\mathrm{e}], \mathrm{k}[12], \mathrm{k}[21]]$;

$$
\begin{equation*}
\text { params }:=\left[k_{e} V_{e}, k_{12}, k_{21}\right] \tag{2}
\end{equation*}
$$

The perfect differential ideal generated by the equations, saturated by the multiplicative family generated by the denominators.
The base field is the field of the rational fractions generated by the parameters over Q.
A sophisticated way to express the fact that we do not want to discuss the possible vanishing of parameters.

```
    > ideal := RosenfeldGroebner ([edoA,edoB], basefield=field
    (generators=params), R);
        ideal:= [regular_differential_chain]
        Equations (ideal [1], solved);
    [\frac{d}{d}t}\mp@subsup{x}{2}{}(t)=\mp@subsup{k}{12}{}\mp@subsup{x}{1}{}(t)-\mp@subsup{k}{21}{}\mp@subsup{x}{2}{}(t),\frac{\textrm{d}}{\textrm{d}t}\mp@subsup{x}{1}{}(t)
        - }\frac{\mp@subsup{k}{12}{}\mp@subsup{x}{1}{}(t\mp@subsup{)}{}{2}-\mp@subsup{k}{21}{}\mp@subsup{x}{2}{}(t)\mp@subsup{x}{1}{}(t)+\mp@subsup{k}{12}{}\mp@subsup{x}{1}{}(t)\mp@subsup{k}{e}{}+\mp@subsup{V}{e}{}\mp@subsup{x}{1}{}(t)-\mp@subsup{k}{21}{}\mp@subsup{x}{2}{}(t)\mp@subsup{k}{e}{}}{\mp@subsup{k}{e}{}+\mp@subsup{x}{1}{}(t)}
```

Change of ranking: eliminate the non-observed variable $x 2$, in order to get an ODE constraining $x 1$, its derivates and the parameters

```
IOideal := Pardi (ideal [1],
    ranking (derivations = [t],
```

 blocks \(=\) [x[2], \(x[1]\), params]));
 IOideal \(:=\) regular_differential_chain
 [The sought equation

$$
\begin{aligned}
& \text { [> IOrel := Equations (IOideal, leader=derivative(x[1](t))) [1]; } \\
& \text { IOrel }:=\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x_{1}(t)\right) x_{1}(t)^{2}+2\left(\frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}} x_{1}(t)\right) x_{1}(t) k_{e}+\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x_{1}(t)\right) k_{e}^{2} \\
& +\left(\frac{\mathrm{d}}{\mathrm{~d} t} x_{1}(t)\right) x_{1}(t)^{2} k_{12}+\left(\frac{\mathrm{d}}{\mathrm{~d} t} x_{1}(t)\right) x_{1}(t)^{2} k_{21}+2\left(\frac{\mathrm{~d}}{\mathrm{~d} t} x_{1}(t)\right) x_{1}(t) k_{e} k_{12} \\
& +2\left(\frac{\mathrm{~d}}{\mathrm{~d} t} x_{1}(t)\right) x_{1}(t) k_{e} k_{21}+\left(\frac{\mathrm{d}}{\mathrm{~d} t} x_{1}(t)\right) k_{e}^{2} k_{12}+\left(\frac{\mathrm{d}}{\mathrm{~d} t} x_{1}(t)\right) k_{e}^{2} k_{21} \\
& +\left(\frac{\mathrm{d}}{\mathrm{~d} t} x_{1}(t)\right) k_{e} V_{e}+x_{1}(t)^{2} V_{e} k_{21}+x_{1}(t) k_{e} V_{e} k_{21}
\end{aligned}
$$

A work in progress with F. Lemaire, M. Rosenkranz and Georg Regensburger ...
The RatBilge algorithm should help transforming differential equations into integral equations.
[> normalized_IOrel := IOrel / Initial (IOrel, R):
$>\mathrm{L}:=$ RatBilge (normalized_IOrel, t, R);

$$
L:=\left[\frac{x_{1}(t) V_{e} k_{21}}{k_{e}+x_{1}(t)}, \frac{k_{12} x_{1}(t)^{2}+x_{1}(t)^{2} k_{21}-k_{e}^{2} k_{12}-k_{e}^{2} k_{21}-k_{e} V_{e}}{k_{e}+x_{1}(t)}, x_{1}(t)\right]
$$

[The meaning of the above output

$$
\begin{align*}
& >\mathrm{L}[1]+\text { add (Diff (L[i], t\$(i-1)), i }=2 \ldots \text { nops (L)); } \\
& \quad \frac{x_{1}(t) V_{e} k_{21}}{k_{e}+x_{1}(t)}+\frac{\partial}{\partial t}\left(\frac{k_{12} x_{1}(t)^{2}+x_{1}(t)^{2} k_{21}-k_{e}^{2} k_{12}-k_{e}^{2} k_{21}-k_{e} V_{e}}{k_{e}+x_{1}(t)}\right)+\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} x_{1}(t) \tag{10}
\end{align*}
$$

JJust check
> normal (normalized_IOrel - add (Differentiate (L[i], t\$(i-1), R), i = 1 .. nops (L)));

