The State of Arithmetic and Complex Dynamics in Sage

Benjamin Hutz

Department of Mathematical Sciences Florida Institute of Technology

> November 7, 2013 Sage-Days 55

Directory Structure

- sage/schemes/generic
- sage/schemes/projective
- sage/schemes/affine

Creating Projective and Affine Spaces

- Rings
 - integer
 - p-adic
 - g polynomial
- Fields
- Finite Fields

Affine and Projective Spaces

- ==, ! =, _init_(), _copy_()
- dimension
- coordinate_ring()
- change_ring()
- o normalize_coordinates()
- base_ring
- subscheme

Points

- ==, ! =, _init_(), _copy_()
- scale_by()
- clear_denominators()
- change_ring()
- dehomogenize()
- normalize_coordinates()
- nth_iterate(), orbit()

inherited

- codomain()
- base_ring
- __get__

Morphisms

- normalize_coordinates()
- 2 ==,!=, _init_(), _copy_()
- scale_by()
- dehomogenize()
- degree()
- o nth_iterate_map()
- dynatomic_polynomial([m,n])
- resultant() only dimension 1
- is_morphism()
- primes_of_bad_reduction()
- conjugate()

inherited

- domain, codomain
- base_ring()
- defining_polynomials(), __get__

Finite Fields

- cyclegraph()
- orbit_structure()
- hash()

Heights: 14218 (5.13.beta2)

Points and Morphisms

- greens_function()
- height()
- canonical_height()

Rational Preperiodic points: 14219 (needs review)

- height_difference_bound()
- @ multiplier()
- possible_periods()
- rational_preimages()
- lift_to_rational_periodic()
- formula | rational_(pre)periodic_points() (or graph)

Reviews

- 14219 rational preperiodic points
- products of projective space
- Wehler K3

To Do: Minor Changes

- **1** add switch to dynatomic polynomial to remove all multiple roots at each step (gcd(f, f')).
- global_height for ZZ.
- tutorials
- is_periodic(), is_preperiodic(), cyclestrucure() for rational points
- primes of bad reduction, is_morphism add defining equations of subscheme to ideal to make these work over subschemes
- _validate() in projetive_space does not check that the polynomials are in the coordinate ring. (neither does affine_space)

```
1 R.<t,s,w>=PolynomialRing(GF(5),3)
2 P.<x,y>=ProjectiveSpace(QQ,1)
3 P._validate([t-s])
```

To Do: More Involved

- What finite field functionality can also work in Zmod(n) for composite n.
- 2 Lazy imports wherever possible.

To Do: Algorithm implementation

- FMV algorithm (automorphisms groups)
- Krumm-Doyle Algorithm (points of small height for number fields)
- Bruin-Molnar algorithm minimal models
- Macualay resultant http://minimair.org/mr/

To Do: Algorithm implementation

- FMV algorithm (automorphisms groups)
- Krumm-Doyle Algorithm (points of small height for number fields)
- Bruin-Molnar algorithm minimal models
- Macualay resultant http://minimair.org/mr/

More amorphous tasks

- What to do with critical points and PCF maps?
- p-adic dynamics