The State of Arithmetic and Complex Dynamics in Sage Benjamin Hutz Department of Mathematical Sciences Florida Institute of Technology > November 7, 2013 Sage-Days 55 ## **Directory Structure** - sage/schemes/generic - sage/schemes/projective - sage/schemes/affine ## Creating Projective and Affine Spaces - Rings - integer - p-adic - g polynomial - Fields - Finite Fields # Affine and Projective Spaces - ==, ! =, _init_(), _copy_() - dimension - coordinate_ring() - change_ring() - o normalize_coordinates() - base_ring - subscheme #### **Points** - ==, ! =, _init_(), _copy_() - scale_by() - clear_denominators() - change_ring() - dehomogenize() - normalize_coordinates() - nth_iterate(), orbit() #### inherited - codomain() - base_ring - __get__ ## Morphisms - normalize_coordinates() - 2 ==,!=, _init_(), _copy_() - scale_by() - dehomogenize() - degree() - o nth_iterate_map() - dynatomic_polynomial([m,n]) - resultant() only dimension 1 - is_morphism() - primes_of_bad_reduction() - conjugate() #### inherited - domain, codomain - base_ring() - defining_polynomials(), __get__ #### Finite Fields - cyclegraph() - orbit_structure() - hash() ### Heights: 14218 (5.13.beta2) #### Points and Morphisms - greens_function() - height() - canonical_height() #### Rational Preperiodic points: 14219 (needs review) - height_difference_bound() - @ multiplier() - possible_periods() - rational_preimages() - lift_to_rational_periodic() - formula | rational_(pre)periodic_points() (or graph) #### Reviews - 14219 rational preperiodic points - products of projective space - Wehler K3 ## To Do: Minor Changes - **1** add switch to dynatomic polynomial to remove all multiple roots at each step (gcd(f, f')). - global_height for ZZ. - tutorials - is_periodic(), is_preperiodic(), cyclestrucure() for rational points - primes of bad reduction, is_morphism add defining equations of subscheme to ideal to make these work over subschemes - _validate() in projetive_space does not check that the polynomials are in the coordinate ring. (neither does affine_space) ``` 1 R.<t,s,w>=PolynomialRing(GF(5),3) 2 P.<x,y>=ProjectiveSpace(QQ,1) 3 P._validate([t-s]) ``` #### To Do: More Involved - What finite field functionality can also work in Zmod(n) for composite n. - 2 Lazy imports wherever possible. ## To Do: Algorithm implementation - FMV algorithm (automorphisms groups) - Krumm-Doyle Algorithm (points of small height for number fields) - Bruin-Molnar algorithm minimal models - Macualay resultant http://minimair.org/mr/ ## To Do: Algorithm implementation - FMV algorithm (automorphisms groups) - Krumm-Doyle Algorithm (points of small height for number fields) - Bruin-Molnar algorithm minimal models - Macualay resultant http://minimair.org/mr/ #### More amorphous tasks - What to do with critical points and PCF maps? - p-adic dynamics