The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

G. Böckle

Harmonic cocycles

Definition

The residue map

Towards an

"Effective version of automatic cuspidality"

References

Drinfeld cusp forms and harmonic cocycles

Gebhard Böckle gebhard.boeckle@uni-due.de

Department of Mathematics Universität Duisburg-Essen 45117 Essen, Germany

Sage Days 21: Function Fields Seattle, May 24–28, 2010

The Bruhat-Tits tree
The Drinfeld upper half plane
Drinfeld modular forms

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycle

Definition Remarks

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Deferences

The Bruhat-Tits tree

The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition Remarks

The residue map

Fowards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Outline

The Bruhat-Tits tree

The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an algorithm

"Effective version of automatic cuspidality"

 $\Gamma \backslash \mathcal{T}$ as a covering of a half line

G. Böckle

The Drinfeld upper

Remarks

The residue map

"Fffective version of automatic cuspidality $\Gamma \setminus T$ as a covering of

Outline

The Bruhat-Tits tree

The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition

Remarks

The residue map

Fourier coefficients

Towards an algorithm

"Effective version of automatic cuspidality"

 $\Gamma \backslash \mathcal{T}$ as a covering of a half line

References

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tr The Drinfeld upper half plane Drinfeld modular

Harmonic cocycles

Definition

The residue map

Fowards ar

"Effective version of automatic cuspidality"

Basic notation

 \mathbb{F}_q the field of $q=p^n$ elements K_∞ a local field with residue field \mathbb{F}_q \mathcal{O}_∞ the ring of integers of K_∞ a uniformizer of K_∞

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycle

Remarks
The residue map

The residue map Fourier coefficients

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Definition (Bruhat-Tits tree)

 $\mathcal{T}:= \text{the simplicial complex of dimension 1 with }$ set of vertices $Vert(\mathcal{T}):=$ homothety classes [L] of rank 2 \mathcal{O}_{∞} -lattices $L\subset K_{\infty}^2$ set of edges $Edge(\mathcal{T}):=$ pairs ([L],[L']) such that $\pi_{\infty}L\subsetneq L'\subsetneq L$. $|\mathcal{T}| \text{ the geometric realization of } \mathcal{T}$

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition

The residue map

Towards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Definition (Bruhat-Tits tree)

 $\mathcal{T} := \text{the simplicial complex of dimension 1 with }$ set of vertices $Vert(\mathcal{T}) :=$ homothety classes [L] of rank 2 \mathcal{O}_{∞} -lattices $L \subset \mathcal{K}^2_{\infty}$ set of edges $Edge(\mathcal{T}) :=$ pairs ([L],[L']) such that $\pi_{\infty}L \subsetneq L' \subsetneq L.$ $|\mathcal{T}|$ the geometric realization of \mathcal{T}

Lemma

 ${\cal T}$ is a q+1-regular tree.

Definition

Particular vertices $\Lambda_i := [\mathcal{O}_{\infty} \oplus \pi_{\infty}^i \mathcal{O}_{\infty}], i \in \mathbb{Z}$. standard vertex Λ_0 , standard edge $e_0 := (\Lambda_0, \Lambda_1)$

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficier

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Group action on ${\mathcal T}$

$$K_{\infty}$$
, \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_q

Consider elements of K_{∞}^2 as **column vectors** \rightarrow have natural left action of $GL_2(K_{\infty})$ on K_{∞}^2 .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition Remarks

The residue map

owards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficie

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

References

 K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{q}

Consider elements of K_{∞}^2 as **column vectors** \rightarrow have natural left action of $GL_2(K_{\infty})$ on K_{∞}^2 .

Definition
$$(GL_2(K_\infty)$$
-action on $\mathcal{T})$
 $GL_2(K_\infty) \times \mathcal{T} \to \mathcal{T} : (\gamma, [L]) \mapsto [\gamma L]$

Set
$$\Gamma_{\infty} := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array}
ight) \in \textit{GL}_2(\mathcal{O}_{\infty}) \mid c \in \pi_{\infty}\mathcal{O}_{\infty}
ight\}.$$

Lemma

 $GL_2(K_{\infty})$ acts transitively on $Vert(\mathcal{T})$ and $Edge(\mathcal{T})$.

$$Vert(\mathcal{T}) = GL_2(K_{\infty})/GL_2(\mathcal{O}_{\infty})K_{\infty}^*,$$

$$Edge(\mathcal{T}) = GL_2(K_{\infty})/\Gamma_{\infty}K_{\infty}^*.$$

Drinfeld's upper half plane Ω

Drinfeld modular forms

The Drinfeld upper half plane

Harmonic cocycles

Definition Remarks

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

nan nne

 $\mathbb{C}_{\infty} := \widehat{K_{\infty}^{alg}}$

Definition (Drinfeld's upper half plane)

$$\Omega:=\mathbb{P}^1(\mathbb{C}_\infty)\smallsetminus\mathbb{P}^1(\mathcal{K}_\infty)$$

Definition $(GL_2(K_\infty)$ -action on $\Omega)$

$$GL_2(K_\infty) \times \Omega \to \Omega : (\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \gamma z = \frac{az+b}{cz+d}$$

K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{a} , \mathbb{C}_{∞} , Ω

Proposition (reduction map)

 \exists a (natural) $GL_2(K_{\infty})$ -equivariant map

$$\rho \colon \Omega \to |\mathcal{T}|$$
 such that

$$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$

$$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q-1 \text{ open discs of radius } 1)!$$

The Drinfeld upper half plane

The residue map

"Effective version of automatic cuspidality $\Gamma \setminus T$ as a covering of

"Effective version of automatic cuspidality $\Gamma \setminus T$ as a covering of

 K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{a} , \mathbb{C}_{∞} , Ω

Proposition (reduction map)

 \exists a (natural) $GL_2(K_{\infty})$ -equivariant map

$$ho \colon \Omega o |\mathcal{T}|$$
 such that

$$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$

$$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q-1 \text{ open discs of radius } 1)!$$

Remarks: Ω is like a tubular neighborhood of \mathcal{T} .

Proposition (reduction map)

 \exists a (natural) $GL_2(K_{\infty})$ -equivariant map

$$ho \colon \Omega o |\mathcal{T}|$$
 such that

$$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$

$$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C} \mid |z| = 1\} \setminus \{q, 1 \text{ open discs of radius}\}$$

 $\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q\text{-1 open discs of radius 1})!$

Remarks: Ω is like a tubular neighborhood of \mathcal{T} . $GL_2(K_{\infty})$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω .

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficient

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}_{L}$ as a covering of

Proposition (reduction map)

 \exists a (natural) $GL_2(K_{\infty})$ -equivariant map

$$\rho \colon \Omega \to |\mathcal{T}|$$
 such that

$$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$

$$z^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid 1 = 1\}, (z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$

$$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \backslash (q\text{-}1 \text{ open discs of radius } 1)!$$

Remarks: Ω is like a tubular neighborhood of \mathcal{T} .

 $GL_2(K_\infty)$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω .

On these charts use Laurent series type expansions to define (rigid) analytic functions on Ω .

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular

Harmonic cocycles

efinition emarks

The residue map

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus T_c$ as a covering of

From now on (for simplicity):

$$\mathcal{A}=\mathbb{F}_q[T]\subset\mathcal{K}=\mathbb{F}_q(T)\subset\mathcal{K}_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:=rac{1}{T}$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper

Drinfeld modular forms

Harmonic cocycles

Definition Remarks

The residue map

owards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

$$A=\mathbb{F}_q[T]\subset K=\mathbb{F}_q(T)\subset K_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:=rac{1}{T}$$

Fix $\Gamma \subset GL_2(A)$ a congruence subgroup:

Definition (Goss)

A Drinfeld modular form of weight k, type ℓ for Γ is a rigid analytic function $f \colon \Omega \to \mathbb{C}_{\infty}$ such that

(a)
$$f(\gamma z) = \det \gamma^{-\ell} (cz + d)^k f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

(b) Laurent series expansion of f at all cusps has vanishing principal part.

Drinfeld modular forms

The Drinfeld uppe half plane Drinfeld modular

forms

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficients

Towards ar algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

$$A=\mathbb{F}_q[T]\subset K=\mathbb{F}_q(T)\subset K_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:=rac{1}{T}$$

Fix $\Gamma \subset GL_2(A)$ a congruence subgroup:

Definition (Goss)

A Drinfeld modular form of weight k, type ℓ for Γ is a rigid analytic function $f \colon \Omega \to \mathbb{C}_{\infty}$ such that

(a)
$$f(\gamma z) = \det \gamma^{-\ell} (cz + d)^k f(z)$$
 for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$.

(b) Laurent series expansion of f at all cusps has vanishing principal part.

Examples: The maps

(rank 2 Drinfeld module φ) \mapsto the *i*-th coefficient of φ_a .

(rank 2 Drinfeld module φ) \mapsto its discriminant.

Drinfeld modular forms

The Drinfeld upper half plane Drinfeld modular

forms

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficien

Towards ar

"Effective version of automatic cuspidality"

\(\mathcal{T}\) as a covering of a half line

Results

Define cusp forms (as usual). Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper

Drinfeld modular forms

Harmonic cocycle

Definition Remarks

The residue map Fourier coefficien

Fowards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Results

Define cusp forms (as usual).

Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms.

Let f be a Hecke eigenform with eigenvalues $a_{\mathfrak{p}}(f)$.

Theorem (Goss)

The $a_p(f)$ are integral

 $K_f := K(\{a_{\mathfrak{p}}(f)\}_{\mathfrak{p}})$ is finite over K.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane

Drinfeld modular forms

Harmonic cocycles

Definition

The residue map Fourier coefficient

Towards as

"Effective version of automatic cuspidality"

Γ\ T as a covering of

Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms.

Let f be a Hecke eigenform with eigenvalues $a_n(f)$.

Theorem (Goss)

The $a_{\mathfrak{p}}(f)$ are integral

 $K_f := K(\{a_{\mathfrak{p}}(f)\}_{\mathfrak{p}})$ is finite over K.

Theorem (B.)

(1) There is a strictly compatible system

$$\left(
ho_{f,\lambda}\colon \mathsf{Gal}(\overline{K}/K) o \mathsf{GL}_1(\widehat{K_f}^\lambda)
ight)_{\lambda \ \mathsf{finite}}$$

such that $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) = a_{\mathfrak{p}}(f)$ for almost all p.

(2) The sequence $(a_{\mathfrak{p}}(f))_{\mathfrak{p}}$ is given by a Hecke character!

Drinfeld modular

forms

"Effective version of automatic cuspidality' $\Gamma \setminus T$ as a covering of

General multiplicity one is wrong!

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime?

 \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana)

G. Böckle

Drinfeld modular forms

The Drinfeld upper half plane Drinfeld modular forms

...

Harmonic cocycles

Definition Remarks

The residue map

Fowards ar Ilgorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

General multiplicity one is wrong!

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion

points of Drinfeld modules of rank 2 over K. (C. Armana)

There is no Ramanujan-Petersson conjecture

For forms of *automorphic weight k*, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits to The Drinfeld uppe half plane Drinfeld modular forms

Harmonic cocycles

Definition Remarks

The residue map Fourier coefficie

> Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus T$ as a covering of

Deferences

General multiplicity one is wrong!

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana)

There is no Ramanujan-Petersson conjecture

For forms of automorphic weight k, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$.

Hecke characters and Galois reps. for DMF's:

Can have $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) \neq a_{\mathfrak{p}}(f)$ for $\mathfrak{p} \not\mid N\mathfrak{p}_{\lambda}$ because of possible non-ordinary reduction of $X_0(N\mathfrak{p}_{\lambda})$ at \mathfrak{p}

Determine such \mathfrak{p} for $X_0(N)$; do they obey some patterns??

Compute ∞ -types of the associated Hecke characters.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycles

Definition Remarks

The residue ma

Towards an algorithm

"Effective version of automatic cuspidality"

automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line

General multiplicity one is wrong!

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana)

There is no Ramanujan-Petersson conjecture

For forms of automorphic weight k, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$.

Hecke characters and Galois reps. for DMF's:

Can have $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) \neq a_{\mathfrak{p}}(f)$ for $\mathfrak{p} \not\mid N\mathfrak{p}_{\lambda}$ because of possible non-ordinary reduction of $X_0(N\mathfrak{p}_{\lambda})$ at \mathfrak{p} Determine such \mathfrak{p} for $X_0(N)$; do they obey some patterns?? Compute ∞ -types of the associated Hecke characters.

Recover eigenforms from eigenvalues when possible?

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycles

Definition
Remarks
The residue map

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line

Harmonic cocycles

 \mathcal{T} , $Edge(\mathcal{T})$, Γ

"Drinfeld modular forms via local systems on trees":

Let M be a $K[GL_2(A)]$ -module with $\dim_K(M)$ finite.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular

Harmonic cocycles

Definition

Remarks
The residue map
Fourier coefficients

Towards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

.

The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition

The residue map

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

References

"Drinfeld modular forms via local systems on trees":

Let M be a $K[GL_2(A)]$ -module with $\dim_K(M)$ finite.

Definition

 $C_{har}(\Gamma, M)$:= the K-vector space of M-valued Γ -invariant harmonic cocycles := the set of maps

$$c: Edge(\mathcal{T}) \rightarrow M: e \mapsto c(e),$$

such that:

- 1. For all edges e one has c(-e) = -c(e).
- 2. For all vertices v one has $\sum_{e \to v} c(e) = 0$, where the sum is over all edges e ending at v.
- 3. For all $\gamma \in \Gamma$ and $e \in Edge(T)$ one has $c(\gamma e) = \gamma c(e)$.

(1)

 \mathcal{T} , $Edge(\mathcal{T})$, Γ

Drinfeld modular forms

The Bruhat-Tits to The Drinfeld uppe half plane Drinfeld modular

Harmonic cocycles

Definitio

Remarks

The residue map Fourier coefficient

Towards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

References

Proposition (automatic cuspidality; Teitelbaum)

If M is p-power torsion then:

 $\exists Z \subset \Gamma \backslash \mathcal{T}$ finite, s.t. all $c \in C_{har}(\Gamma, M)$ vanish outside Z.

→ space of harmonic cocycles is computable!

(1)

Proposition (automatic cuspidality; Teitelbaum)

If M is p-power torsion then:

 $\exists Z \subset \Gamma \backslash \mathcal{T}$ finite, s.t. all $c \in C_{har}(\Gamma, M)$ vanish outside Z.

→ space of harmonic cocycles is computable!

(2) $C_{har}(\Gamma, \mathbb{Z}) \cong \text{automorphic forms for } \Gamma$.

Proposition (Gekeler)

 $C_{har!}(\Gamma, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_p \subset C_{har}(\Gamma, \mathbb{F}_p)$ describes double cusp forms inside weight 2 cusp forms.

Drinfeld modular forms

The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Remarks

The residue map

Towards an

algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line

The residue map

$$\mathcal{T}$$
, $Edge(\mathcal{T})$, Γ , $C_{har}(\Gamma, M)$

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω .

 Ω is a tubular neighborhood of \mathcal{T} via ρ .

 ρ^{-1} of the inner part of an edge e is an annulus A(e).

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular

Harmonic cocycles

Definition

The residue map

Towards ar

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω .

 Ω is a tubular neighborhood of \mathcal{T} via ρ .

 ρ^{-1} of the inner part of an edge e is an annulus A(e).

Define: For f of weight 2

 $\mathsf{Res}_2 \colon \mathit{Edge}(\mathcal{T}) \to \mathbb{C}_\infty \colon e \mapsto \mathsf{Res}_{A(e)}(\mathit{fdz}).$

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω .

 Ω is a tubular neighborhood of $\mathcal T$ via ho.

 ρ^{-1} of the inner part of an edge e is an annulus A(e).

Define: For f of weight 2

 $\mathsf{Res}_2 \colon \mathit{Edge}(\mathcal{T}) o \mathbb{C}_\infty \colon e \mapsto \mathsf{Res}_{A(e)}(\mathit{fdz}).$

Theorem (Teitelbaum)

Res₂: $S_2^{Dr}(\Gamma, \mathbb{C}_{\infty}) \longrightarrow C_{har}(\Gamma, K) \otimes_K \mathbb{C}_{\infty}$ is an isomorphism of \mathbb{C}_{∞} -vector space

An analogous theorem holds in weight k with $M \approx Sym^{k-2}$.

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}_{L}$ as a covering of

G. Böckle

Drinfeld modi forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycle

Definition Remarks

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Construct $\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$.

Use
$$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$
 with $\mathit{Edge}(\mathcal{T}) \to \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$.

Define $c \mapsto \mu_{2,c}$ with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular

Harmonic cocycles

efinition

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Deferences

Construct
$$\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$$
.

Use
$$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$
 with $\mathit{Edge}(\mathcal{T}) \to \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$.

Define
$$c \mapsto \mu_{2,c}$$
 with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$.

Integrate against "Poisson-kernel":

$$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^{\mathsf{\Gamma}} o S_2^{\mathit{Dr}}(\mathsf{\Gamma},\mathbb{C}_\infty)
onumber \ \mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1}rac{1}{z-\zeta}d\mu(\zeta)$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Remarks

The residue map

Towards an

"Effective version of automatic cuspidality" Γ\ Τ as a covering of

Construct
$$\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$$
.

Use
$$\mathbb{P}^1(\mathcal{K}_{\infty})=\mathsf{boundary}(\mathcal{T})$$
 with $\mathit{Edge}(\mathcal{T}) o \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}): e \mapsto \mathit{U}(e)$.

Define
$$c \mapsto \mu_{2,c}$$
 with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$.

Integrate against "Poisson-kernel":

$$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^\Gamma o S_2^{Dr}(\Gamma,\mathbb{C}_\infty) \ \mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1}rac{1}{z-\zeta}d\mu(\zeta)$$

Theorem: The following composite is the identity:

$$(\mu \mapsto \mathsf{Poiss.Int.}) \circ (c \mapsto \mu_{2,c}) \circ (f \mapsto \mathsf{Res}_2(f))$$

Corollary Res₂ is injective.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

efinition

The residue map

Towards an

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Construct $\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$.

On the proof: Suffices for $\Gamma = \Gamma(N)$ for $N \in A \setminus \mathbb{F}_a$.

Use
$$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$
 with $\mathit{Edge}(\mathcal{T}) o \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$.

Define $c\mapsto \mu_{2,c}$ with $\mu_{2,c}(\mathit{U}(e)):=c(e)\quad \forall e.$

Integrate against "Poisson-kernel":

$$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^\Gamma o S_2^{Dr}(\Gamma,\mathbb{C}_\infty)
onumber$$
 $\mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1}rac{1}{z-\zeta}d\mu(\zeta)$

Theorem: The following composite is the identity:

$$(\mu \mapsto \mathsf{Poiss.Int.}) \circ (c \mapsto \mu_{2,c}) \circ (f \mapsto \mathsf{Res}_2(f))$$

Corollary Res₂ is injective.

Surjectivity: Compute dim $S_2^{Dr}(\Gamma, \mathbb{C}_{\infty})$ via Riemann-Roch; Compute dim $C_{har}(\Gamma, \mathbb{C}_{\infty})$ combinatorially. Get equality.

G. Böckle

forms
The Bruhat-Tits tree
The Drinfeld upper
half plane

Definition Remarks The residue map

Towards an algorithm
"Effective version of automatic cuspidality"

 $\Gamma \setminus \mathcal{T}$ as a covering of a half line References

On Fourier coefficients

 $\mathbf{e} = \mathsf{Carlitz}$ exponential, $\widetilde{\pi} = \mathsf{Carlitz}$ period, $t(x) := \mathbf{e}^{-1}(\pi x)$ uniformizer near cusp ∞ , $f = \sum_{i \geq 1} a_i t^i$ a form for $SL_2(A)$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

efinition

The residue map

Fourier coefficients

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular

Harmonic cocycles

Definition Remarks

The residue map

Towards an

"Effective version of automatic cuspidality"

References

 $\mathbf{e}=\mathsf{Carlitz}$ exponential, $\widetilde{\pi}=\mathsf{Carlitz}$ period, $t(x):=\mathbf{e}^{-1}(\pi x)$ uniformizer near cusp ∞ , $f=\sum_{i\geq 1}a_it^i$ a form for $SL_2(A)$

Corollary

$$a_i = \widetilde{\pi} \int_{\pi_\infty \mathcal{O}_\infty} t^{1-i}(x) d\mu_f(x)$$

 \leadsto Can (in principle) recover the Fourier coefficients of a Drinfeld modular form f from its associated measure μ_f (in any weight)

"Effective version of automatic cuspidality"

What is really needed to completely describe a harmonic cocycle?

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycle

Definition Remarks

The residue map

Fowards ar algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

half line

"Effective version of automatic cuspidality"

What is really needed to completely describe a harmonic cocycle?

Definition (Serre?)

A simplex
$$t \in Vert(\mathcal{T}) \cup Edge(\mathcal{T})$$
 is Γ -stable iff $Stab_{\Gamma}(t) = \{1\}.$

Proposition (Serre?)

There are only finitely many Γ -stable orbits of simplices.

These orbits are effectively computable! (see Ralf's talk)

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tre
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycles

Definition

Remarks
The residue map

Towards an

i owards ar algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

Definition (Serre?)

A simplex $t \in Vert(\mathcal{T}) \cup Edge(\mathcal{T})$ is Γ -stable iff $Stab_{\Gamma}(t) = \{1\}.$

Proposition (Serre?)

There are only finitely many Γ -stable orbits of simplices.

These orbits are effectively computable! (see Ralf's talk)

Theorem (Teitelbaum)

Suppose Γ is p'-torsion free. Then:

- Any Γ-invariant harmonic cocycle is determined by its values on the Γ-stable orbits of edges.
- ► Relations: Only those from Γ-stable vertices.

Drinfeld modular forms

The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition

The residue map

Towards an algorithm

"Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of

$\Gamma \backslash \mathcal{T}$ as a covering of a half line

How to understand the quotient $\Gamma \backslash \mathcal{T}$ and the Γ -stable simplices?

Proposition

The half line on $\{\Lambda_i\}_{i\geq 0}$ represents $GL_2(\mathbb{F}_q[T])\backslash \mathcal{T}$.

There are no $GL_2(\mathbb{F}_q[T])$ -stable simplices of \mathcal{T} . The stabilizers of Λ_i , $i \geq 1$, are strictly increasing in i.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree
The Drinfeld upper
half plane
Drinfeld modular
forms

Harmonic cocycles

Definition

The residue map

Towards an

"Effective version of automatic cuspidality"

 $\Gamma \backslash \mathcal{T}$ as a covering of a half line

$\Gamma \backslash \mathcal{T}$ as a covering of a half line

How to understand the quotient $\Gamma \backslash \mathcal{T}$ and the $\Gamma\text{-stable}$ simplices?

Proposition

The half line on $\{\Lambda_i\}_{i\geq 0}$ represents $GL_2(\mathbb{F}_q[T])\backslash \mathcal{T}$.

There are no $GL_2(\mathbb{F}_q[T])$ -stable simplices of \mathcal{T} . The stabilizers of Λ_i , $i \geq 1$, are strictly increasing in i.

For general Γ:

$$\Gamma \backslash \mathcal{T} \to \mathit{GL}_2(\mathbb{F}_q[T]) \backslash \mathcal{T}$$

is a finite, highly ramified 'covering' of the above half line.

"Monotonicity of the stabilizers" is inherited by $\Gamma \setminus \mathcal{T}$ \leadsto stable simplices only above Λ_i for i small (depends on Γ).

For details on algorithms and some repetition: See Ralf's talk.

4□ → 4□ → 4 □ → 1 □ → 9 Q P

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Remarks

The residue map

Towards an

algorithm
"Effective version of

automatic cuspidality" $\Gamma \backslash \mathcal{T} \text{ as a covering of }$

a half line

G. Böckle, An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals, preprint,

http://www.uni-due.de/arith-geom/boeckle/preprints.html

E.-U. Gekeler and U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. **6** (1995), 689–708.

E.-U. Gekeler and M. Reversat. Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math. 476 (1996), 27-93.

J.-P. Serre, *Trees*, Springer Monographs in Mathematics. Springer, 2003.

J. Teitelbaum, The Poisson Kernel for Drinfeld Modular Curves, JAMS 4 (1991), No. 3, pp. 491-511.

"Effective version of automatic cuspidality' $\Gamma \setminus T$ as a covering of