The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular G. Böckle Harmonic cocycles Definition The residue map Towards an "Effective version of automatic cuspidality" References ## Drinfeld cusp forms and harmonic cocycles Gebhard Böckle gebhard.boeckle@uni-due.de Department of Mathematics Universität Duisburg-Essen 45117 Essen, Germany Sage Days 21: Function Fields Seattle, May 24–28, 2010 The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms ## Outline #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycle Definition Remarks The residue map ## Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Deferences The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms ### Harmonic cocycles Definition Remarks The residue map Fourier coefficients ### Outline ### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles Definition Remarks The residue map ### Fowards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ### Outline The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms ### Harmonic cocycles Definition Remarks The residue map Fourier coefficients ### Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \backslash \mathcal{T}$ as a covering of a half line #### G. Böckle The Drinfeld upper Remarks The residue map "Fffective version of automatic cuspidality $\Gamma \setminus T$ as a covering of ### Outline The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms ### Harmonic cocycles Definition Remarks The residue map Fourier coefficients ### Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \backslash \mathcal{T}$ as a covering of a half line References #### G. Böckle Drinfeld modular forms The Bruhat-Tits tr The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles Definition The residue map Fowards ar "Effective version of automatic cuspidality" ### Basic notation \mathbb{F}_q the field of $q=p^n$ elements K_∞ a local field with residue field \mathbb{F}_q \mathcal{O}_∞ the ring of integers of K_∞ a uniformizer of K_∞ #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycle Remarks The residue map The residue map Fourier coefficients ### Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ## Definition (Bruhat-Tits tree) $\mathcal{T}:= \text{the simplicial complex of dimension 1 with }$ set of vertices $Vert(\mathcal{T}):=$ homothety classes [L] of rank 2 \mathcal{O}_{∞} -lattices $L\subset K_{\infty}^2$ set of edges $Edge(\mathcal{T}):=$ pairs ([L],[L']) such that $\pi_{\infty}L\subsetneq L'\subsetneq L$. $|\mathcal{T}| \text{ the geometric realization of } \mathcal{T}$ Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular Harmonic cocycles Definition The residue map Towards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ## Definition (Bruhat-Tits tree) $\mathcal{T} := \text{the simplicial complex of dimension 1 with }$ set of vertices $Vert(\mathcal{T}) :=$ homothety classes [L] of rank 2 \mathcal{O}_{∞} -lattices $L \subset \mathcal{K}^2_{\infty}$ set of edges $Edge(\mathcal{T}) :=$ pairs ([L],[L']) such that $\pi_{\infty}L \subsetneq L' \subsetneq L.$ $|\mathcal{T}|$ the geometric realization of \mathcal{T} ### Lemma ${\cal T}$ is a q+1-regular tree. ### **Definition** Particular vertices $\Lambda_i := [\mathcal{O}_{\infty} \oplus \pi_{\infty}^i \mathcal{O}_{\infty}], i \in \mathbb{Z}$. standard vertex Λ_0 , standard edge $e_0 := (\Lambda_0, \Lambda_1)$ ## Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms #### Harmonic cocycles Definition Remarks The residue map Fourier coefficier #### Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ## Group action on ${\mathcal T}$ $$K_{\infty}$$, \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_q Consider elements of K_{∞}^2 as **column vectors** \rightarrow have natural left action of $GL_2(K_{\infty})$ on K_{∞}^2 . #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles Definition Remarks The residue map ## owards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Harmonic cocycles Definition Remarks The residue map Fourier coefficie Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of References K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{q} Consider elements of K_{∞}^2 as **column vectors** \rightarrow have natural left action of $GL_2(K_{\infty})$ on K_{∞}^2 . Definition $$(GL_2(K_\infty)$$ -action on $\mathcal{T})$ $GL_2(K_\infty) \times \mathcal{T} \to \mathcal{T} : (\gamma, [L]) \mapsto [\gamma L]$ Set $$\Gamma_{\infty} := \left\{ \left(egin{array}{cc} a & b \\ c & d \end{array} ight) \in \textit{GL}_2(\mathcal{O}_{\infty}) \mid c \in \pi_{\infty}\mathcal{O}_{\infty} ight\}.$$ ### Lemma $GL_2(K_{\infty})$ acts transitively on $Vert(\mathcal{T})$ and $Edge(\mathcal{T})$. $$Vert(\mathcal{T}) = GL_2(K_{\infty})/GL_2(\mathcal{O}_{\infty})K_{\infty}^*,$$ $$Edge(\mathcal{T}) = GL_2(K_{\infty})/\Gamma_{\infty}K_{\infty}^*.$$ ## Drinfeld's upper half plane Ω Drinfeld modular forms The Drinfeld upper half plane Harmonic cocycles Definition Remarks The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of nan nne $\mathbb{C}_{\infty} := \widehat{K_{\infty}^{alg}}$ Definition (Drinfeld's upper half plane) $$\Omega:=\mathbb{P}^1(\mathbb{C}_\infty)\smallsetminus\mathbb{P}^1(\mathcal{K}_\infty)$$ Definition $(GL_2(K_\infty)$ -action on $\Omega)$ $$GL_2(K_\infty) \times \Omega \to \Omega : (\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \gamma z = \frac{az+b}{cz+d}$$ ## K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{a} , \mathbb{C}_{∞} , Ω ## Proposition (reduction map) \exists a (natural) $GL_2(K_{\infty})$ -equivariant map $$\rho \colon \Omega \to |\mathcal{T}|$$ such that $$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$ $$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q-1 \text{ open discs of radius } 1)!$$ The Drinfeld upper half plane The residue map "Effective version of automatic cuspidality $\Gamma \setminus T$ as a covering of "Effective version of automatic cuspidality $\Gamma \setminus T$ as a covering of K_{∞} , \mathcal{O}_{∞} , π_{∞} , \mathbb{F}_{a} , \mathbb{C}_{∞} , Ω ## Proposition (reduction map) \exists a (natural) $GL_2(K_{\infty})$ -equivariant map $$ho \colon \Omega o |\mathcal{T}|$$ such that $$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$ $$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q-1 \text{ open discs of radius } 1)!$$ **Remarks:** Ω is like a tubular neighborhood of \mathcal{T} . ## Proposition (reduction map) \exists a (natural) $GL_2(K_{\infty})$ -equivariant map $$ho \colon \Omega o |\mathcal{T}|$$ such that $$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$ $$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C} \mid |z| = 1\} \setminus \{q, 1 \text{ open discs of radius}\}$$ $\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \setminus (q\text{-1 open discs of radius 1})!$ **Remarks:** Ω is like a tubular neighborhood of \mathcal{T} . $GL_2(K_{\infty})$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω . ## Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles Definition Remarks The residue map Fourier coefficient #### Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}_{L}$ as a covering of ## Proposition (reduction map) \exists a (natural) $GL_2(K_{\infty})$ -equivariant map $$\rho \colon \Omega \to |\mathcal{T}|$$ such that $$\rho^{-1}(|e_0| \setminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$ $$z^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid 1 = 1\}, (z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$ $$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid |z| = 1\} \backslash (q\text{-}1 \text{ open discs of radius } 1)!$$ **Remarks:** Ω is like a tubular neighborhood of \mathcal{T} . $GL_2(K_\infty)$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω . On these charts use Laurent series type expansions to define (rigid) analytic functions on Ω . Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular Harmonic cocycles efinition emarks The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus T_c$ as a covering of ### From now on (for simplicity): $$\mathcal{A}=\mathbb{F}_q[T]\subset\mathcal{K}=\mathbb{F}_q(T)\subset\mathcal{K}_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:= rac{1}{T}$$ #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper ## Drinfeld modular forms #### Harmonic cocycles Definition Remarks The residue map ## owards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of $$A=\mathbb{F}_q[T]\subset K=\mathbb{F}_q(T)\subset K_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:= rac{1}{T}$$ Fix $\Gamma \subset GL_2(A)$ a congruence subgroup: Definition (Goss) A Drinfeld modular form of weight k, type ℓ for Γ is a rigid analytic function $f \colon \Omega \to \mathbb{C}_{\infty}$ such that (a) $$f(\gamma z) = \det \gamma^{-\ell} (cz + d)^k f(z)$$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. (b) Laurent series expansion of f at all cusps has vanishing principal part. Drinfeld modular forms The Drinfeld uppe half plane Drinfeld modular ### forms Harmonic cocycles Definition Remarks The residue map Fourier coefficients Towards ar algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of $$A=\mathbb{F}_q[T]\subset K=\mathbb{F}_q(T)\subset K_\infty=\mathbb{F}_q((rac{1}{T})),\,\,\pi_\infty:= rac{1}{T}$$ Fix $\Gamma \subset GL_2(A)$ a congruence subgroup: Definition (Goss) A Drinfeld modular form of weight k, type ℓ for Γ is a rigid analytic function $f \colon \Omega \to \mathbb{C}_{\infty}$ such that (a) $$f(\gamma z) = \det \gamma^{-\ell} (cz + d)^k f(z)$$ for all $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. (b) Laurent series expansion of f at all cusps has vanishing principal part. **Examples:** The maps (rank 2 Drinfeld module φ) \mapsto the *i*-th coefficient of φ_a . (rank 2 Drinfeld module φ) \mapsto its discriminant. Drinfeld modular forms The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue map Fourier coefficien Towards ar "Effective version of automatic cuspidality" \(\mathcal{T}\) as a covering of a half line ### Results Define cusp forms (as usual). Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper ## Drinfeld modular forms Harmonic cocycle Definition Remarks The residue map Fourier coefficien Fowards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ### Results Define cusp forms (as usual). Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms. Let f be a Hecke eigenform with eigenvalues $a_{\mathfrak{p}}(f)$. ## Theorem (Goss) The $a_p(f)$ are integral $K_f := K(\{a_{\mathfrak{p}}(f)\}_{\mathfrak{p}})$ is finite over K. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane ## Drinfeld modular forms Harmonic cocycles Definition The residue map Fourier coefficient ### Towards as "Effective version of automatic cuspidality" Γ\ T as a covering of Define Hecke operators for primes $0 \neq \mathfrak{p} \subset \mathbb{F}_q[T]$ Have no Petersson inner product for char. p forms. Let f be a Hecke eigenform with eigenvalues $a_n(f)$. ## Theorem (Goss) The $a_{\mathfrak{p}}(f)$ are integral $K_f := K(\{a_{\mathfrak{p}}(f)\}_{\mathfrak{p}})$ is finite over K. ## Theorem (B.) (1) There is a strictly compatible system $$\left(ho_{f,\lambda}\colon \mathsf{Gal}(\overline{K}/K) o \mathsf{GL}_1(\widehat{K_f}^\lambda) ight)_{\lambda \ \mathsf{finite}}$$ such that $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) = a_{\mathfrak{p}}(f)$ for almost all p. (2) The sequence $(a_{\mathfrak{p}}(f))_{\mathfrak{p}}$ is given by a Hecke character! Drinfeld modular ### forms "Effective version of automatic cuspidality' $\Gamma \setminus T$ as a covering of ### General multiplicity one is wrong! Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana) #### G. Böckle Drinfeld modular forms The Drinfeld upper half plane Drinfeld modular forms ### ... Harmonic cocycles Definition Remarks The residue map Fowards ar Ilgorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ### General multiplicity one is wrong! Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana) ### There is no Ramanujan-Petersson conjecture For forms of *automorphic weight k*, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$. #### G. Böckle Drinfeld modular forms The Bruhat-Tits to The Drinfeld uppe half plane Drinfeld modular forms ### Harmonic cocycles Definition Remarks The residue map Fourier coefficie > Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus T$ as a covering of Deferences ### General multiplicity one is wrong! Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana) ## There is no Ramanujan-Petersson conjecture For forms of automorphic weight k, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$. ### Hecke characters and Galois reps. for DMF's: Can have $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) \neq a_{\mathfrak{p}}(f)$ for $\mathfrak{p} \not\mid N\mathfrak{p}_{\lambda}$ because of possible non-ordinary reduction of $X_0(N\mathfrak{p}_{\lambda})$ at \mathfrak{p} Determine such \mathfrak{p} for $X_0(N)$; do they obey some patterns?? Compute ∞ -types of the associated Hecke characters. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue ma Towards an algorithm "Effective version of automatic cuspidality" automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line ### General multiplicity one is wrong! Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime? \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K. (C. Armana) ## There is no Ramanujan-Petersson conjecture For forms of automorphic weight k, in (the few) known cases, the motivic weight seem span $[0, k/2] \cap \mathbb{Z}$. ## Hecke characters and Galois reps. for DMF's: Can have $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) \neq a_{\mathfrak{p}}(f)$ for $\mathfrak{p} \not\mid N\mathfrak{p}_{\lambda}$ because of possible non-ordinary reduction of $X_0(N\mathfrak{p}_{\lambda})$ at \mathfrak{p} Determine such \mathfrak{p} for $X_0(N)$; do they obey some patterns?? Compute ∞ -types of the associated Hecke characters. ### Recover eigenforms from eigenvalues when possible? G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line ## Harmonic cocycles \mathcal{T} , $Edge(\mathcal{T})$, Γ "Drinfeld modular forms via local systems on trees": Let M be a $K[GL_2(A)]$ -module with $\dim_K(M)$ finite. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles #### Definition Remarks The residue map Fourier coefficients Towards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of . The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles ### Definition The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of References "Drinfeld modular forms via local systems on trees": Let M be a $K[GL_2(A)]$ -module with $\dim_K(M)$ finite. ### **Definition** $C_{har}(\Gamma, M)$:= the K-vector space of M-valued Γ -invariant harmonic cocycles := the set of maps $$c: Edge(\mathcal{T}) \rightarrow M: e \mapsto c(e),$$ ### such that: - 1. For all edges e one has c(-e) = -c(e). - 2. For all vertices v one has $\sum_{e \to v} c(e) = 0$, where the sum is over all edges e ending at v. - 3. For all $\gamma \in \Gamma$ and $e \in Edge(T)$ one has $c(\gamma e) = \gamma c(e)$. (1) \mathcal{T} , $Edge(\mathcal{T})$, Γ Drinfeld modular forms The Bruhat-Tits to The Drinfeld uppe half plane Drinfeld modular Harmonic cocycles Definitio Remarks The residue map Fourier coefficient Towards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of References Proposition (automatic cuspidality; Teitelbaum) If M is p-power torsion then: $\exists Z \subset \Gamma \backslash \mathcal{T}$ finite, s.t. all $c \in C_{har}(\Gamma, M)$ vanish outside Z. → space of harmonic cocycles is computable! (1) ## Proposition (automatic cuspidality; Teitelbaum) If M is p-power torsion then: $\exists Z \subset \Gamma \backslash \mathcal{T}$ finite, s.t. all $c \in C_{har}(\Gamma, M)$ vanish outside Z. → space of harmonic cocycles is computable! (2) $C_{har}(\Gamma, \mathbb{Z}) \cong \text{automorphic forms for } \Gamma$. ## Proposition (Gekeler) $C_{har!}(\Gamma, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{F}_p \subset C_{har}(\Gamma, \mathbb{F}_p)$ describes double cusp forms inside weight 2 cusp forms. Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Remarks The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line ## The residue map $$\mathcal{T}$$, $Edge(\mathcal{T})$, Γ , $C_{har}(\Gamma, M)$ ### Recall: A Drinfeld modular form f is a rigid analytic function on Ω . Ω is a tubular neighborhood of \mathcal{T} via ρ . ρ^{-1} of the inner part of an edge e is an annulus A(e). #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles Definition The residue map Towards ar "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Recall: A Drinfeld modular form f is a rigid analytic function on Ω . Ω is a tubular neighborhood of \mathcal{T} via ρ . ρ^{-1} of the inner part of an edge e is an annulus A(e). **Define:** For f of weight 2 $\mathsf{Res}_2 \colon \mathit{Edge}(\mathcal{T}) \to \mathbb{C}_\infty \colon e \mapsto \mathsf{Res}_{A(e)}(\mathit{fdz}).$ Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular Harmonic cocycles Definition The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Recall: A Drinfeld modular form f is a rigid analytic function on Ω . Ω is a tubular neighborhood of $\mathcal T$ via ho. ρ^{-1} of the inner part of an edge e is an annulus A(e). **Define:** For f of weight 2 $\mathsf{Res}_2 \colon \mathit{Edge}(\mathcal{T}) o \mathbb{C}_\infty \colon e \mapsto \mathsf{Res}_{A(e)}(\mathit{fdz}).$ ## Theorem (Teitelbaum) Res₂: $S_2^{Dr}(\Gamma, \mathbb{C}_{\infty}) \longrightarrow C_{har}(\Gamma, K) \otimes_K \mathbb{C}_{\infty}$ is an isomorphism of \mathbb{C}_{∞} -vector space An analogous theorem holds in weight k with $M \approx Sym^{k-2}$. Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}_{L}$ as a covering of #### G. Böckle Drinfeld modi forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms #### Harmonic cocycle Definition Remarks The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Construct $\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$. Use $$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$ with $\mathit{Edge}(\mathcal{T}) \to \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$. Define $c \mapsto \mu_{2,c}$ with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles efinition ### The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Deferences Construct $$\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$$. Use $$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$ with $\mathit{Edge}(\mathcal{T}) \to \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$. Define $$c \mapsto \mu_{2,c}$$ with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$. Integrate against "Poisson-kernel": $$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^{\mathsf{\Gamma}} o S_2^{\mathit{Dr}}(\mathsf{\Gamma},\mathbb{C}_\infty) onumber \ \mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1} rac{1}{z-\zeta}d\mu(\zeta)$$ #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue map Towards an "Effective version of automatic cuspidality" Γ\ Τ as a covering of Construct $$\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(K_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$$. Use $$\mathbb{P}^1(\mathcal{K}_{\infty})=\mathsf{boundary}(\mathcal{T})$$ with $\mathit{Edge}(\mathcal{T}) o \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}): e \mapsto \mathit{U}(e)$. Define $$c \mapsto \mu_{2,c}$$ with $\mu_{2,c}(U(e)) := c(e) \quad \forall e$. Integrate against "Poisson-kernel": $$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^\Gamma o S_2^{Dr}(\Gamma,\mathbb{C}_\infty) \ \mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1} rac{1}{z-\zeta}d\mu(\zeta)$$ **Theorem:** The following composite is the identity: $$(\mu \mapsto \mathsf{Poiss.Int.}) \circ (c \mapsto \mu_{2,c}) \circ (f \mapsto \mathsf{Res}_2(f))$$ Corollary Res₂ is injective. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles efinition The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Construct $\mu_2 \colon C_{har}(\Gamma, \mathbb{C}_{\infty}) \to \mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_{\infty}), \mathbb{C}_{\infty})^{\Gamma}$. **On the proof:** Suffices for $\Gamma = \Gamma(N)$ for $N \in A \setminus \mathbb{F}_a$. Use $$\mathbb{P}^1(\mathcal{K}_{\infty}) = \mathsf{boundary}(\mathcal{T})$$ with $\mathit{Edge}(\mathcal{T}) o \mathsf{basis}$ of open sets of $\mathbb{P}^1(\mathcal{K}_{\infty}) : e \mapsto \mathit{U}(e)$. Define $c\mapsto \mu_{2,c}$ with $\mu_{2,c}(\mathit{U}(e)):=c(e)\quad \forall e.$ Integrate against "Poisson-kernel": $$\mathsf{Meas}(\mathbb{P}^1(\mathcal{K}_\infty),\mathbb{C}_\infty)^\Gamma o S_2^{Dr}(\Gamma,\mathbb{C}_\infty) onumber$$ $\mu\mapsto f_\mu(z)=\int_{\mathbb{P}^1} rac{1}{z-\zeta}d\mu(\zeta)$ **Theorem:** The following composite is the identity: $$(\mu \mapsto \mathsf{Poiss.Int.}) \circ (c \mapsto \mu_{2,c}) \circ (f \mapsto \mathsf{Res}_2(f))$$ Corollary Res₂ is injective. **Surjectivity:** Compute dim $S_2^{Dr}(\Gamma, \mathbb{C}_{\infty})$ via Riemann-Roch; Compute dim $C_{har}(\Gamma, \mathbb{C}_{\infty})$ combinatorially. Get equality. G. Böckle forms The Bruhat-Tits tree The Drinfeld upper half plane Definition Remarks The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of a half line References ### On Fourier coefficients $\mathbf{e} = \mathsf{Carlitz}$ exponential, $\widetilde{\pi} = \mathsf{Carlitz}$ period, $t(x) := \mathbf{e}^{-1}(\pi x)$ uniformizer near cusp ∞ , $f = \sum_{i \geq 1} a_i t^i$ a form for $SL_2(A)$ #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular #### Harmonic cocycles efinition The residue map ### Fourier coefficients Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular Harmonic cocycles Definition Remarks The residue map Towards an "Effective version of automatic cuspidality" References $\mathbf{e}=\mathsf{Carlitz}$ exponential, $\widetilde{\pi}=\mathsf{Carlitz}$ period, $t(x):=\mathbf{e}^{-1}(\pi x)$ uniformizer near cusp ∞ , $f=\sum_{i\geq 1}a_it^i$ a form for $SL_2(A)$ Corollary $$a_i = \widetilde{\pi} \int_{\pi_\infty \mathcal{O}_\infty} t^{1-i}(x) d\mu_f(x)$$ \leadsto Can (in principle) recover the Fourier coefficients of a Drinfeld modular form f from its associated measure μ_f (in any weight) ## "Effective version of automatic cuspidality" What is really needed to completely describe a harmonic cocycle? #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms #### Harmonic cocycle Definition Remarks The residue map Fowards ar algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of half line ## "Effective version of automatic cuspidality" # What is really needed to completely describe a harmonic cocycle? Definition (Serre?) A simplex $$t \in Vert(\mathcal{T}) \cup Edge(\mathcal{T})$$ is Γ -stable iff $Stab_{\Gamma}(t) = \{1\}.$ ## Proposition (Serre?) There are only finitely many Γ -stable orbits of simplices. These orbits are effectively computable! (see Ralf's talk) #### G. Böckle Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue map Towards an i owards ar algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of Definition (Serre?) A simplex $t \in Vert(\mathcal{T}) \cup Edge(\mathcal{T})$ is Γ -stable iff $Stab_{\Gamma}(t) = \{1\}.$ ## Proposition (Serre?) There are only finitely many Γ -stable orbits of simplices. These orbits are effectively computable! (see Ralf's talk) ## Theorem (Teitelbaum) Suppose Γ is p'-torsion free. Then: - Any Γ-invariant harmonic cocycle is determined by its values on the Γ-stable orbits of edges. - ► Relations: Only those from Γ-stable vertices. Drinfeld modular forms The Bruhat-Tits tre The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \setminus \mathcal{T}$ as a covering of ## $\Gamma \backslash \mathcal{T}$ as a covering of a half line # How to understand the quotient $\Gamma \backslash \mathcal{T}$ and the Γ -stable simplices? ## Proposition The half line on $\{\Lambda_i\}_{i\geq 0}$ represents $GL_2(\mathbb{F}_q[T])\backslash \mathcal{T}$. There are no $GL_2(\mathbb{F}_q[T])$ -stable simplices of \mathcal{T} . The stabilizers of Λ_i , $i \geq 1$, are strictly increasing in i. #### G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition The residue map Towards an "Effective version of automatic cuspidality" $\Gamma \backslash \mathcal{T}$ as a covering of a half line ## $\Gamma \backslash \mathcal{T}$ as a covering of a half line # How to understand the quotient $\Gamma \backslash \mathcal{T}$ and the $\Gamma\text{-stable}$ simplices? ## Proposition The half line on $\{\Lambda_i\}_{i\geq 0}$ represents $GL_2(\mathbb{F}_q[T])\backslash \mathcal{T}$. There are no $GL_2(\mathbb{F}_q[T])$ -stable simplices of \mathcal{T} . The stabilizers of Λ_i , $i \geq 1$, are strictly increasing in i. ### For general Γ: $$\Gamma \backslash \mathcal{T} \to \mathit{GL}_2(\mathbb{F}_q[T]) \backslash \mathcal{T}$$ is a finite, highly ramified 'covering' of the above half line. "Monotonicity of the stabilizers" is inherited by $\Gamma \setminus \mathcal{T}$ \leadsto stable simplices only above Λ_i for i small (depends on Γ). For details on algorithms and some repetition: See Ralf's talk. 4□ → 4□ → 4 □ → 1 □ → 9 Q P G. Böckle Drinfeld modular forms The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles Definition Remarks The residue map Towards an algorithm "Effective version of automatic cuspidality" $\Gamma \backslash \mathcal{T} \text{ as a covering of }$ a half line G. Böckle, An Eichler-Shimura isomorphism over function fields between Drinfeld modular forms and cohomology classes of crystals, preprint, http://www.uni-due.de/arith-geom/boeckle/preprints.html E.-U. Gekeler and U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. **6** (1995), 689–708. E.-U. Gekeler and M. Reversat. Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math. 476 (1996), 27-93. J.-P. Serre, *Trees*, Springer Monographs in Mathematics. Springer, 2003. J. Teitelbaum, The Poisson Kernel for Drinfeld Modular Curves, JAMS 4 (1991), No. 3, pp. 491-511. "Effective version of automatic cuspidality' $\Gamma \setminus T$ as a covering of