Lattices in finite-dimensional real vector spaces
Lattice Constructions
Some Fun Lattice Problems
Lattices with Additional Algebraic Structure
Research Direction
Computing Needs

Lattices in Real, Complex, and Quaternionic Vector Spaces

Stephanie L. Vance

University of Washington

February 6, 2008

Lattices in finite-dimensional real vector spaces
Lattice Constructions
Some Fun Lattice Problems
Lattices with Additional Algebraic Structure
Research Direction
Computing Needs

Lattices in finite-dimensional real vector spaces

Lattice Constructions

Some Fun Lattice Problems

The Kissing Number Problem Sphere Packings

Lattices with Additional Algebraic Structure

 \mathcal{O} -Lattices in Vector Spaces over \mathbb{C}

 \mathcal{O} -Lattices in Vector Spaces over \mathbb{H}

Research Direction

Computing Needs

Lattices over \mathbb{Z}

Let *E* denote a finite-dimensional Euclidean space.

- ▶ A *lattice* in *E* is an additive subroup which is generated by some basis for *E* as a real vector space.
- ▶ A sub-Z-module of a lattice Λ is called a *relative lattice*. A relative lattice Λ' contained in Λ is a (full) lattice in the subspace of E obtained by taking the span of the lattice vectors in Λ' over \mathbb{R} .
- All lattices in E are discrete with respect to the Euclidean topology defined on E. So we can define the norm of a lattice Λ, denoted by N(Λ), to be the norm of its minimal vectors (non-zero vectors of minimal norm).

Generating and Gram Matrices

Let Λ be a lattice in E with lattice basis $\{b_1, \ldots, b_n\}$.

▶ A generating matrix for Λ is the matrix $M \in GL_n(\mathbb{R})$ whose i^{th} row is the coordinates b_i determined by a fixed orthonormal basis for E.

Generating and Gram Matrices

Let Λ be a lattice in E with lattice basis $\{b_1, \ldots, b_n\}$.

- ▶ A generating matrix for Λ is the matrix $M \in GL_n(\mathbb{R})$ whose i^{th} row is the coordinates b_i determined by a fixed orthonormal basis for E.
- ▶ The Gram matrix for Λ corresponding to the above basis is the matrix $A = (\langle b_i, b_j \rangle)_{1 \leq i,j \leq n} = MM^T$ which is a positive definite symmetric matrix in $\operatorname{GL}_n(\mathbb{R})$.

Generating and Gram Matrices

Let Λ be a lattice in E with lattice basis $\{b_1, \ldots, b_n\}$.

- ▶ A generating matrix for Λ is the matrix $M \in GL_n(\mathbb{R})$ whose i^{th} row is the coordinates b_i determined by a fixed orthonormal basis for E.
- ▶ The Gram matrix for Λ corresponding to the above basis is the matrix $A = (\langle b_i, b_j \rangle)_{1 \leq i,j \leq n} = MM^T$ which is a positive definite symmetric matrix in $\operatorname{GL}_n(\mathbb{R})$.
- ▶ A generating matrix and Gram matrix for a lattice are not unique. However, the determinant of a gram matrix is and is called the *determinant* of Λ , denoted by $det(\Lambda)$.

Fundamental regions and Lattice Determinants

Let Λ be a with basis $B = \{b_1, ..., b_n\}$.

 The fundamental parallelotope of Λ with respect to B is the set,

$$P = \{ \sum_i \alpha_i b_i : 0 \le \alpha_i < 1 \}.$$

► E can be tiled with infinitely many copies of P. More explicitly,

$$E = \coprod_{x \in \Lambda} \{x + p : p \in P\}.$$

Note that a fundamental parallelotope for Λ is dependent on the lattice basis B. However, its volume $|\det M|$ is not. The squared volume of a fundamental region is equal to $\det(\Lambda)$.

Fundamental regions of 2-dimensional lattices

Figure: Integer Lattice \mathbb{Z}^2

Figure: Hexagonal lattice

Let *E* be an *n*-dimensional Euclidean space.

▶ For any basis $\{b_1, \ldots, b_n\}$ for E, let Λ be the \mathbb{Z} -module generated by the basis vectors.

Let E be an n-dimensional Euclidean space.

- ▶ For any basis $\{b_1, \ldots, b_n\}$ for E, let Λ be the \mathbb{Z} -module generated by the basis vectors.
- Find the Cholesky decomposition of a positive definite symmetric matrix $Q = AA^T$.

Let E be an n-dimensional Euclidean space.

- ▶ For any basis $\{b_1, \ldots, b_n\}$ for E, let Λ be the \mathbb{Z} -module generated by the basis vectors.
- Find the Cholesky decomposition of a positive definite symmetric matrix $Q = AA^T$.
- ightharpoonup Embed the Ring of Integers for a number field into \mathbb{C}^n

Let *E* be an *n*-dimensional Euclidean space.

- ▶ For any basis $\{b_1, \ldots, b_n\}$ for E, let Λ be the \mathbb{Z} -module generated by the basis vectors.
- Find the Cholesky decomposition of a positive definite symmetric matrix $Q = AA^T$.
- ightharpoonup Embed the Ring of Integers for a number field into \mathbb{C}^n
- ▶ Find the pre-image of linear codes in F_p^n under the natural projection map $\pi: \mathbb{Z}^n \mapsto F_p^n$

Dual Lattices

Let Λ be a lattice in an *n*-dimensional Euclidean space.

 \blacktriangleright The dual of Λ is defined to be the set of vectors

$$\Lambda^* = \{ x \in K : \langle x, \Lambda \rangle \subseteq \mathbb{Z} \}.$$

Dual Lattices

Let Λ be a lattice in an *n*-dimensional Euclidean space.

 \triangleright The dual of \land is defined to be the set of vectors

$$\Lambda^* = \{ x \in K : \langle x, \Lambda \rangle \subseteq \mathbb{Z} \}.$$

The dual of Λ is a lattice in E. Moreover, a basis for Λ* may be found by computing the dual basis for any lattice basis of Λ. This provides a bijective correspondence between ordered lattice bases for Λ and ordered lattice bases for Λ*

Dual Lattices

Let Λ be a lattice in an *n*-dimensional Euclidean space.

 \triangleright The dual of \land is defined to be the set of vectors

$$\Lambda^* = \{ x \in K : \langle x, \Lambda \rangle \subseteq \mathbb{Z} \}.$$

- The dual of Λ is a lattice in E. Moreover, a basis for Λ* may be found by computing the dual basis for any lattice basis of Λ. This provides a bijective correspondence between ordered lattice bases for Λ and ordered lattice bases for Λ*
- Λ is said to be integral if it is contained in its dual and it is said to be unimodular (or self-dual) if it is equal to its dual.

Lattices in finite-dimensional real vector spaces

Lattice Constructions

Some Fun Lattice Problems

Lattices with Additional Algebraic Structure
Research Direction

Computing Needs

Dual Lattices (continued)

Dual Lattices (continued)

▶ If M is a generating matrix for Λ and M^* is a generating matrix for Λ^* corresponding to the basis dual to the rows of M, then $M^{-1} = (M^*)^T$.

Dual Lattices (continued)

- ▶ If M is a generating matrix for Λ and M^* is a generating matrix for Λ^* corresponding to the basis dual to the rows of M, then $M^{-1} = (M^*)^T$.
- ▶ For any \mathbb{Z} -lattice Λ , we always have $\det(\Lambda) \det(\Lambda^*) = 1$.

Relative and Dual Lattices

Let Λ be a lattice in E and let F be any subspace in E.

- ▶ The relative lattice $\Lambda \cap F$ is a lattice in F if and only if $\pi_{F^{\perp}}(\Lambda)$ is a lattice in F^{\perp}
- ▶ $\Lambda \cap F$ is an lattice in F if and only if $\Lambda^* \cap F^{\perp}$ is a lattice in F^{\perp} .
- ▶ If $\Lambda \cap F$ is a \mathbb{Z} -lattice in F then,

$$\det \Lambda = \det(\Lambda \cap F) \det(\pi_{F^{\perp}}(\Lambda))$$

► An argument between Isaac Newton and David Gregory in 1694

(missing)

- An argument between Isaac Newton and David Gregory in 1694
- ► Newton proved correct in 1874 (almost 200 years later!).

(missing)

- An argument between Isaac Newton and David Gregory in 1694
- Newton proved correct in 1874 (almost 200 years later!).
- The 4-dimensional case resolved in 2003 by Oleg Musin.

(missing)

- An argument between Isaac Newton and David Gregory in 1694
- Newton proved correct in 1874 (almost 200 years later!).
- ► The 4-dimensional case resolved in 2003 by Oleg Musin.
- Open problen in higher dimensions except eight and twenty-four.

(missing)

Figure: 2D Kissing # Solution

Packing Congruent Spheres in Euclidean Space

Configurations of congruent non-overlapping spheres in finite-dimensional Euclidean space are called *sphere packings*.

Packing Congruent Spheres in Euclidean Space

- ► Configurations of congruent non-overlapping spheres in finite-dimensional Euclidean space are called *sphere packings*.
- ▶ Sphere packings in which the sphere centers form a lattice are called *lattice packings*.

Packing Congruent Spheres in Euclidean Space

- ► Configurations of congruent non-overlapping spheres in finite-dimensional Euclidean space are called *sphere packings*.
- Sphere packings in which the sphere centers form a lattice are called *lattice packings*.
- The problem of finding the densest lattice sphere packings remains open for dimensions larger than eight except for dimension twenty-four.

Figure: Hexagonal Sphere Packing

 Kepler's conjecture in 1611 for 3-dimensional FCC lattice.

Figure: FCC Lattice Packing

- Kepler's conjecture in 1611 for 3-dimensional FCC lattice.
- ► Gauss proved conjecture for the lattice sphere packing problem (1831).

Figure: FCC Lattice Packing

- Kepler's conjecture in 1611 for 3-dimensional FCC lattice.
- Gauss proved conjecture for the lattice sphere packing problem (1831).
- ➤ Toth reduced the Kepler's conjecture to several special cases (1953).

Figure: FCC Lattice Packing

- Kepler's conjecture in 1611 for 3-dimensional FCC lattice.
- ► Gauss proved conjecture for the lattice sphere packing problem (1831).
- ➤ Toth reduced the Kepler's conjecture to several special cases (1953).
- Thomas Hales found computer assisted proof in 1998.

Figure: FCC Lattice Packing

Lattice Packing Quantites

- ▶ Packing Radius: $\frac{\sqrt{N(\Lambda)}}{2}$
- ▶ Packing Density: $\frac{N(\Lambda)^{n/2}V_n}{2^n\sqrt{\det(\Lambda)}}$ V_n denotes the volume of unit sphere in \mathbb{R}^n .

Computing Needs

- Hermite Invariant: $\gamma(\Lambda) = \frac{N(\Lambda)}{\det(\Lambda)^{1/(n)}}$.
- Covering Radius

Preliminaries for lattices in \mathbb{C}^n

Let F be a quadratic extension of $\mathbb Q$ such that $F=\mathbb Q(\sqrt{d})$ with d<0.

Preliminaries for lattices in \mathbb{C}^n

- Let F be a quadratic extension of $\mathbb Q$ such that $F=\mathbb Q(\sqrt{d})$ with d<0.
- ▶ Define an involution on $\mathbb{C} = \mathbb{R} \otimes F$ by $a + b\sqrt{d} \mapsto a b\sqrt{d}$, with a and b real numbers. For each $x \in \mathbb{C}$, its image under this map will be denoted by \overline{x} and is called its conjugate.

Preliminaries for lattices in \mathbb{C}^n

- Let F be a quadratic extension of $\mathbb Q$ such that $F=\mathbb Q(\sqrt{d})$ with d<0.
- ▶ Define an involution on $\mathbb{C} = \mathbb{R} \otimes F$ by $a + b\sqrt{d} \mapsto a b\sqrt{d}$, with a and b real numbers. For each $x \in \mathbb{C}$, its image under this map will be denoted by \overline{x} and is called its conjugate.
- ▶ We can define lattices in finite-dimensional complex vector spaces over self-conjugate orders in F. Recall that an order in F is a subring \mathcal{O} that is also a free sub-Z-module with $\mathrm{rank}_{\mathbb{Z}}\mathcal{O} = \mathrm{rank}_{\mathbb{Q}}F$.

O-Lattices in complex vector spaces

Let \mathcal{O} be a self-conjugate order in F and let E be an n-dimensional complex vector space. An \mathcal{O} -lattice in E is a free \mathcal{O} -module which is generated by some basis for E as a complex vector space.

- ▶ If Λ is an \mathcal{O} -lattice in any subspace of E, Λ is called a *relative* \mathcal{O} -lattice.
- Any \mathcal{O} -lattice in E has the structure as a \mathbb{Z} -lattice in a (2n)-dimensional real vector space.

Gaussian and Eisenstein Lattices

The Eisenstein lattices are lattices in complex vector spaces over the self-conjugate maximal order of Eisenstein integers

$$\mathcal{E} = \left\{ a + \left(\frac{1 + i\sqrt{3}}{2} \right) b : a, b \in \mathbb{Z} \right\}.$$

Examples:

- ▶ The root lattices D_4 and E_8
- ▶ The 16-dimensional Barnes-wall lattice Λ_{16}
- ▶ The Coxeter-Todd lattice K₁₂
- The Leech lattice Λ₂₄

Preliminaries for lattices in \mathbb{H}^n

▶ Let *H* denote the skew field of rational quaternions such that

$$H = \mathbb{Q} \oplus \mathbb{Q}i \oplus \mathbb{Q}j \oplus \mathbb{Q}k,$$

with
$$i^2 = j^2 = k^2 = -1$$
 and $ij = -ji = k$.

Preliminaries for lattices in \mathbb{H}^n

▶ Let *H* denote the skew field of rational quaternions such that

$$H=\mathbb{Q}\oplus\mathbb{Q}i\oplus\mathbb{Q}j\oplus\mathbb{Q}k,$$

with
$$i^2 = j^2 = k^2 = -1$$
 and $ij = -ji = k$.

▶ Define a map on $\mathbb{H} = \mathbb{R} \otimes H$, by $a + bi + cj + dk \mapsto a - bi - cj - dk$, with $a, b, c, d \in \mathbb{R}$. This is commonly referred to as quaternionic conjugation and the image of an element $x \in \mathbb{H}$ under this map is denoted by \overline{x} .

Preliminaries for lattices in \mathbb{H}^n

▶ Let *H* denote the skew field of rational quaternions such that

$$H = \mathbb{Q} \oplus \mathbb{Q} i \oplus \mathbb{Q} j \oplus \mathbb{Q} k,$$

with
$$i^2 = j^2 = k^2 = -1$$
 and $ij = -ji = k$.

- ▶ Define a map on $\mathbb{H} = \mathbb{R} \otimes H$, by $a + bi + cj + dk \mapsto a bi cj dk$, with $a, b, c, d \in \mathbb{R}$. This is commonly referred to as quaternionic conjugation and the image of an element $x \in \mathbb{H}$ under this map is denoted by \overline{x} .
- ▶ Quaterionic conjugation is an anti-involution on ℍ!

O-Lattices in quaternionic vector spaces

Let \mathcal{O} be a self-conjugate order in H and let E be an n-dimensional quaternionic vector space. An \mathcal{O} -lattice in E is a free \mathcal{O} -module which is generated by some basis for E as a quaternionic vector space.

- ▶ If Λ is an \mathcal{O} -lattice in any subspace of E, Λ is called a *relative* \mathcal{O} -lattice.
- Any \mathcal{O} -lattice in E has the structure as a lattice over \mathbb{Z} in a (4n)-dimensional real vector space.

Hurwitz Lattices

The Hurwitz lattices are lattices in quaternionic vector spaces over the self-conjugate maximal order of Hurwitz integers

$$\mathcal{H} = \left\{ a + bi + cj + dk : a, b, c, d \in \mathbb{Z} \text{ or } a, b, c, d \in \mathbb{Z} + \frac{1}{2} \right\}.$$

The Hurwitz integers are nice to work over because they are a principal (right/left) ideal domain for which we have "division with small remainder".

Examples of Hurwitz Lattices:

- ▶ The root lattices D_4 and E_8
- ▶ The 16-dimensional Barnes-wall lattice Λ_{16}
- The Leech lattice Λ₂₄

Duality for \mathcal{O} -lattices

Let Λ be an \mathcal{O} -lattice in a complex or quaternionic vector space E. Using the hermitian structure defined on E by $h(x,y)=x\overline{y}$, we can construct an \mathcal{O} -dual lattice for Λ .

▶ The *dual of* Λ is defined to be the set of vectors

$$\Lambda^{\#} = \{ x \in K : h(x, \Lambda) \subseteq \mathcal{O} \}.$$

A basis for $\Lambda^{\#}$ may be found by computing the dual basis for any lattice basis of Λ (with respect to h).

Lattices in finite-dimensional real vector spaces
Lattice Constructions
Some Fun Lattice Problems
Lattices with Additional Algebraic Structure
Research Direction
Computing Needs

Research Direction

▶ Extend existing theorems for lattices in \mathbb{R}^n to \mathcal{O} -lattices in \mathbb{C}^n and \mathbb{H}^n .

Research Direction

- ▶ Extend existing theorems for lattices in \mathbb{R}^n to \mathcal{O} -lattices in \mathbb{C}^n and \mathbb{H}^n .
- ► The sphere packing problem for *O*-lattices in complex and quaternionic vector spaces.

Research Direction

- ▶ Extend existing theorems for lattices in \mathbb{R}^n to \mathcal{O} -lattices in \mathbb{C}^n and \mathbb{H}^n .
- The sphere packing problem for O-lattices in complex and quaternionic vector spaces.
 - ► Find Upper bounds for sphere packing densities by looking at lower-dimensional *O*-lattices.

Research Direction

- ▶ Extend existing theorems for lattices in \mathbb{R}^n to \mathcal{O} -lattices in \mathbb{C}^n and \mathbb{H}^n .
- The sphere packing problem for O-lattices in complex and quaternionic vector spaces.
 - ► Find Upper bounds for sphere packing densities by looking at lower-dimensional *O*-lattices.
 - ▶ Construct series of laminated \mathcal{O} -lattices for in \mathbb{C}^n

Lattices in finite-dimensional real vector spaces
Lattice Constructions
Some Fun Lattice Problems
Lattices with Additional Algebraic Structure
Research Direction
Computing Needs

Computing Needs

► Construct lattices using one of the four methods given.

- ► Construct lattices using one of the four methods given.
- Compute minimal vectors, lattice norm and determinant, packing density, and covering radius.

- Construct lattices using one of the four methods given.
- Compute minimal vectors, lattice norm and determinant, packing density, and covering radius.
- Compute an LLL-reduced basis (A basis of relatively short vectors).

- Construct lattices using one of the four methods given.
- Compute minimal vectors, lattice norm and determinant, packing density, and covering radius.
- Compute an LLL-reduced basis (A basis of relatively short vectors).
- ▶ Work with \mathcal{O} -lattices while using basis vectors in \mathbb{C}^n or \mathbb{H}^n .

- Construct lattices using one of the four methods given.
- Compute minimal vectors, lattice norm and determinant, packing density, and covering radius.
- Compute an LLL-reduced basis (A basis of relatively short vectors).
- ▶ Work with \mathcal{O} -lattices while using basis vectors in \mathbb{C}^n or \mathbb{H}^n .
- ► Compute lattice automorphism groups and determine the existence of certain subgroups.

References:

- 1. J. Conway and N. J. A. Sloane, *Sphere Packings, Lattices and Groups*, third edition, Springer-Verlag, 1999.
- 2. H. Cohn and A. Kumar, *Optimality and uniqueness of the Leech lattice among lattices*, 2003.
- 3. W. V Ebeling, Lattices and Codes: A course partially based on lectures by F. Hirzebruch, Vieweg, 1994.
- 4. J. Martinet, *Perfect Lattices in Euclidean Space*, Springer Verlag, 2003.