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Lattices over Z

Let E denote a finite-dimensional Euclidean space.

I A lattice in E is an additive subroup which is generated by
some basis for E as a real vector space.

I A sub-Z -module of a lattice Λ is called a relative lattice. A
relative lattice Λ′ contained in Λ is a (full) lattice in the
subspace of E obtained by taking the span of the lattice
vectors in Λ′ over R.

I All lattices in E are discrete with respect to the Euclidean
topology defined on E . So we can define the norm of a lattice
Λ , denoted by N(Λ), to be the norm of its minimal vectors
(non-zero vectors of minimal norm).
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Generating and Gram Matrices

Let Λ be a lattice in E with lattice basis {b1, . . . , bn}.
I A generating matrix for Λ is the matrix M ∈ GLn(R) whose

i th row is the coordinates bi determined by a fixed
orthonormal basis for E .

I The Gram matrix for Λ corresponding to the above basis is
the matrix A = (〈bi , bj〉)1≤i ,j≤n = MMT which is a positive
definite symmetric matrix in GLn(R).

I A generating matrix and Gram matrix for a lattice are not
unique. However, the determinant of a gram matrix is and is
called the determinant of Λ , denoted by det(Λ).
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Fundamental regions and Lattice Determinants

Let Λ be a with basis B = {b1, ..., bn}.
I The fundamental parallelotope of Λ with respect to B is the

set,
P = {

∑
i

αibi : 0 ≤ αi < 1}.

I E can be tiled with infinitely many copies of P. More
explicitly,

E =
∐

x∈Λ
{x + p : p ∈ P}.

I Note that a fundamental parallelotope for Λ is dependent on
the lattice basis B. However, its volume |det M| is not. The
squared volume of a fundamental region is equal to det(Λ).
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Fundamental regions of 2-dimensional lattices

Figure: Integer Lattice Z2 Figure: Hexagonal lattice
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Constructing Lattices in f.d. Euclidean spaces

Let E be an n-dimensional Euclidean space.

I For any basis {b1, . . . , bn} for E , let Λ be the Z-module
generated by the basis vectors.

I Find the Cholesky decomposition of a positive definite
symmetric matrix Q = AAT .

I Embed the Ring of Integers for a number field into Cn

I Find the pre-image of linear codes in Fp
n under the natural

projection map π : Zn 7→ Fp
n
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Dual Lattices

Let Λ be a lattice in an n-dimensional Euclidean space.

I The dual of Λ is defined to be the set of vectors

Λ∗ = {x ∈ K : 〈x ,Λ〉 ⊆ Z}.

I The dual of Λ is a lattice in E . Moreover, a basis for Λ∗ may
be found by computing the dual basis for any lattice basis of
Λ. This provides a bijective correspondence between ordered
lattice bases for Λ and ordered lattice bases for Λ∗

I Λ is said to be integral if it is contained in its dual and it is
said to be unimodular (or self-dual) if it is equal to its dual.
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Dual Lattices (continued)

I If M is a generating matrix for Λ and M∗ is a generating
matrix for Λ∗ corresponding to the basis dual to the rows of
M, then M−1 = (M∗)T .

I For any Z-lattice Λ, we always have det(Λ) det(Λ∗) = 1.
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Relative and Dual Lattices

Let Λ be a lattice in E and let F be any subspace in E .

I The relative lattice Λ ∩ F is a lattice in F if and only if
πF⊥(Λ) is a lattice in F⊥

I Λ∩F is an lattice in F if and only if Λ∗∩F⊥ is a lattice in F⊥.

I If Λ ∩ F is a Z-lattice in F then,

det Λ = det(Λ ∩ F ) det(πF⊥(Λ))

Stephanie L. Vance Lattices in Real, Complex, and Quaternionic Vector Spaces



Lattices in finite-dimensional real vector spaces
Lattice Constructions

Some Fun Lattice Problems
Lattices with Additional Algebraic Structure

Research Direction
Computing Needs

The Kissing Number Problem
Sphere Packings

The Kissing Number Problem

I An argument between
Isaac Newton and David
Gregory in 1694

I Newton proved correct in
1874 (almost 200 years
later!).

I The 4-dimensional case
resolved in 2003 by Oleg
Musin.

I Open problen in higher
dimensions except eight
and twenty-four.

(missing)

Figure: 12 Spheres ”Kissing” a
Central Sphere
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Figure: 2D Kissing # Solution
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The Kissing Number Problem
Sphere Packings

Packing Congruent Spheres in Euclidean Space

I Configurations of congruent non-overlapping spheres in
finite-dimensional Euclidean space are called sphere packings.

I Sphere packings in which the sphere centers form a lattice are
called lattice packings.

I The problem of finding the densest lattice sphere packings
remains open for dimensions larger than eight except for
dimension twenty-four.
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Figure: Hexagonal Sphere Packing
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The Kissing Number Problem
Sphere Packings

A Little History...

I Kepler’s conjecture in
1611 for 3-dimensional
FCC lattice.

I Gauss proved conjecture
for the lattice sphere
packing problem (1831).

I Toth reduced the Kepler’s
conjecture to several
special cases (1953).

I Thomas Hales found
computer assisted proof in
1998.

Figure: FCC Lattice Packing
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The Kissing Number Problem
Sphere Packings

Lattice Packing Quantites

I Packing Radius:

√
N(Λ)

2

I Packing Density: N(Λ)n/2Vn

2n
√

det(Λ)

Vn denotes the volume of unit sphere in Rn.

I Hermite Invariant: γ(Λ) = N(Λ)

det(Λ)1/(n) .

I Covering Radius
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Preliminaries for lattices in Cn

I Let F be a quadratic extension of Q such that F = Q(
√

d)
with d < 0.

I Define an involution on C = R⊗ F by a + b
√

d 7→ a− b
√

d ,
with a and b real numbers. For each x ∈ C, its image under
this map will be denoted by x and is called its conjugate.

I We can define lattices in finite-dimensional complex vector
spaces over self-conjugate orders in F . Recall that an order in
F is a subring O that is also a free sub-Z -module with
rankZO = rankQF .
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O-Lattices in complex vector spaces

Let O be a self-conjugate order in F and let E be an n-dimensional
complex vector space. An O-lattice in E is a free O-module which
is generated by some basis for E as a complex vector space.

I If Λ is an O-lattice in any subspace of E , Λ is called a relative
O-lattice.

I Any O-lattice in E has the structure as a Z-lattice in a
(2n)-dimensional real vector space.
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Gaussian and Eisenstein Lattices

The Eisenstein lattices are lattices in complex vector spaces over
the self-conjugate maximal order of Eisenstein integers

E =

{
a +

(
1 + i

√
3

2

)
b : a, b ∈ Z

}
.

Examples:

I The root lattices D4 and E8

I The 16-dimensional Barnes-wall lattice Λ16

I The Coxeter-Todd lattice K12

I The Leech lattice Λ24
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Preliminaries for lattices in Hn

I Let H denote the skew field of rational quaternions such that

H = Q⊕Qi ⊕Qj ⊕Qk,

with i2 = j2 = k2 = −1 and ij = −ji = k.

I Define a map on H = R⊗ H, by
a + bi + cj + dk 7→ a− bi − cj − dk, with a, b, c , d ∈ R. This
is commonly referred to as quaternionic conjugation and the
image of an element x ∈ H under this map is denoted by x .

I Quaterionic conjugation is an anti-involution on H!

Stephanie L. Vance Lattices in Real, Complex, and Quaternionic Vector Spaces



Lattices in finite-dimensional real vector spaces
Lattice Constructions

Some Fun Lattice Problems
Lattices with Additional Algebraic Structure

Research Direction
Computing Needs

O-Lattices in Vector Spaces over C
O-Lattices in Vector Spaces over H

Preliminaries for lattices in Hn

I Let H denote the skew field of rational quaternions such that

H = Q⊕Qi ⊕Qj ⊕Qk,

with i2 = j2 = k2 = −1 and ij = −ji = k.

I Define a map on H = R⊗ H, by
a + bi + cj + dk 7→ a− bi − cj − dk, with a, b, c , d ∈ R. This
is commonly referred to as quaternionic conjugation and the
image of an element x ∈ H under this map is denoted by x .

I Quaterionic conjugation is an anti-involution on H!

Stephanie L. Vance Lattices in Real, Complex, and Quaternionic Vector Spaces



Lattices in finite-dimensional real vector spaces
Lattice Constructions

Some Fun Lattice Problems
Lattices with Additional Algebraic Structure

Research Direction
Computing Needs

O-Lattices in Vector Spaces over C
O-Lattices in Vector Spaces over H

Preliminaries for lattices in Hn

I Let H denote the skew field of rational quaternions such that

H = Q⊕Qi ⊕Qj ⊕Qk,

with i2 = j2 = k2 = −1 and ij = −ji = k.

I Define a map on H = R⊗ H, by
a + bi + cj + dk 7→ a− bi − cj − dk, with a, b, c , d ∈ R. This
is commonly referred to as quaternionic conjugation and the
image of an element x ∈ H under this map is denoted by x .

I Quaterionic conjugation is an anti-involution on H!

Stephanie L. Vance Lattices in Real, Complex, and Quaternionic Vector Spaces



Lattices in finite-dimensional real vector spaces
Lattice Constructions

Some Fun Lattice Problems
Lattices with Additional Algebraic Structure

Research Direction
Computing Needs

O-Lattices in Vector Spaces over C
O-Lattices in Vector Spaces over H

O-Lattices in quaternionic vector spaces

Let O be a self-conjugate order in H and let E be an
n-dimensional quaternionic vector space. An O-lattice in E is a
free O-module which is generated by some basis for E as a
quaternionic vector space.

I If Λ is an O-lattice in any subspace of E , Λ is called a relative
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O-Lattices in Vector Spaces over C
O-Lattices in Vector Spaces over H

Hurwitz Lattices

The Hurwitz lattices are lattices in quaternionic vector spaces over
the self-conjugate maximal order of Hurwitz integers

H =

{
a + bi + cj + dk : a, b, c , d ∈ Z or a, b, c , d ∈ Z +

1

2

}
.

The Hurwitz integers are nice to work over because they are a
principal (right/left) ideal domain for which we have ”division with
small remainder”.

Examples of Hurwitz Lattices:

I The root lattices D4 and E8

I The 16-dimensional Barnes-wall lattice Λ16

I The Leech lattice Λ24
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Duality for O-lattices

Let Λ be an O-lattice in a complex or quaternionic vector space E .
Using the hermitian structure defined on E by h(x , y) = xy , we
can construct an O-dual lattice for Λ.

I The dual of Λ is defined to be the set of vectors

Λ# = {x ∈ K : h(x ,Λ) ⊆ O}.

I A basis for Λ# may be found by computing the dual basis for
any lattice basis of Λ (with respect to h).
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Research Direction

I Extend existing theorems for lattices in Rn to O-lattices in Cn

and Hn.

I The sphere packing problem for O-lattices in complex and
quaternionic vector spaces.

I Find Upper bounds for sphere packing densities by looking at
lower-dimensional O-lattices.

I Construct series of laminated O-lattices for in Cn
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Computing Needs

I Construct lattices using one of the four methods given.

I Compute minimal vectors, lattice norm and determinant,
packing density, and covering radius.

I Compute an LLL-reduced basis (A basis of relatively short
vectors).

I Work with O-lattices while using basis vectors in Cn or Hn.

I Compute lattice automorphism groups and determine the
existence of certain subgroups.
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