Using SAGE for Search in Graph Theory

Stephen G. Hartke

Department of Mathematics
University of Nebraska-Lincoln
www.math.unl.edu/~shartke2
hartke@unl.edu

Joint work with Jamie Radcliffe

Searching in Graph Theory

Want to be able to do computations to
find or enumerate or classify graphs
(or graph-like structures) with a specified property.

Moore Graphs

Def. A Moore graph is Δ-regular, has $\Delta^{2}+1$ vertices, has diameter 2 , and is triangle- and C_{4}-free.

For which Δ do Moore graphs exist?

Moore Graphs

Def. A Moore graph is Δ-regular, has $\Delta^{2}+1$ vertices, has diameter 2 , and is triangle- and C_{4}-free.

For which Δ do Moore graphs exist?

Thm. (Hoffman-Singleton 60s)
Only for $\Delta=2,3,7$ and possibly 57.

Graph Packing and Decomposition

Def. A packing of copies of G in a graph H is a set of edge-disjoint subgraphs $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of H such that $H_{i} \cong G$.

Def. A decomposition of H into copies of G is a packing of copies of G such that every edge of H appears in a copy.

Example

Does K_{n} decompose into copies of a perfect matching?

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings.

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings. Yes, if n is even.

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings. Yes, if n is even.

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings. Yes, if n is even.

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings. Yes, if n is even.

Example

Does K_{n} decompose into copies of a perfect matching?
No, if n is odd: no perfect matchings. Yes, if n is even.

Decomposition Problems

Conj. (Ringel) If T is a tree with r edges, then $K_{2 r+1}$ decomposes into copies of T.

Implied by the Graceful Labeling Conj by Rosa.

Decomposition Problems

Conj. (Ringel) If T is a tree with r edges, then $K_{2 r+1}$ decomposes into copies of T.

Implied by the Graceful Labeling Conj by Rosa.

Conj. (El-Zanati) If G is non-complete and has r edges, then $K_{2 r+1}$ decomposes into copies of G.

Petersen Graph

Does K_{10} decompose into copies of the Petersen graph P ?

Petersen Graph

Does K_{10} decompose into copies of the Petersen graph P ?
P is a Moore graph:
3-regular,
triangle- and C_{4}-free, girth 5

Petersen Graph

Does K_{10} decompose into copies of the Petersen graph P ?
P is a Moore graph:
3-regular, triangle- and C_{4}-free, girth 5
P has 15 edges,
K_{10} has 45 edges.
$\Rightarrow 3$ copies of P.

Petersen Graph

Does K_{10} decompose into copies of the Petersen graph P ?

No. Elegant proof using eigenvalues by Fan and Schwenk.

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

HS is a Moore graph:
7-regular, triangle- and C_{4}-free, girth 5

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

HS is a Moore graph:
7-regular, triangle- and C_{4}-free, girth 5

HS has 175 edges,
K_{50} has 1225 edges.
$\Rightarrow 7$ copies of HS .

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

Eigenvalue proof does not work.

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

Eigenvalue proof does not work.
How many copies of HS can be packed into K_{50} ?

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

Eigenvalue proof does not work.
How many copies of HS can be packed into K_{50} ?
Meszka and Siagiova can pack 5 copies using voltage graphs.

Hoffman-Singleton Graph

Does K_{50} decomp into copies of Hoffman-Singleton graph HS?

Eigenvalue proof does not work.
How many copies of HS can be packed into K_{50} ?
Meszka and Siagiova can pack 5 copies using voltage graphs.

This is a finite problem. Can we solve it using computer search?

Integer Programming

An integer program IP is an optimization problem of the form

$$
\begin{array}{rrl}
\max & c^{\top} x & \\
\text { subject to } & A x & \leq b \\
& x & \geq 0 \\
& x & \in \mathbb{Z}
\end{array}
$$

Integer Programming

An integer program IP is an optimization problem of the form

$$
\begin{array}{rrl}
\max & c^{T} x & \\
\text { subject to } & A x & \leq b \\
& x & \geq 0 \\
& x & \in \mathbb{Z}
\end{array}
$$

Linear programming relaxation drops the integral restriction.
LPs can be solved in polynomial time.
In practice, the best general method for attacking exponentially-sized problems.

Feasibility Testing

To search for a decomposition, we construct an IP such that feasible solutions correspond to the desired decomposition.

Petersen Graph

\forall edge e and copy i, indicator variables $x_{e}^{i} \in\{0,1\}$ indicating whether edge e is in copy i.

Constraints:
partition: $\quad \forall$ edge $e, \sum_{i} x_{e}^{i}=1$
regular: \forall copy $i, \forall v, \quad \sum_{e \ni v} x_{e}^{i}=3$

Petersen Graph

\forall edge e and copy i, indicator variables $x_{e}^{i} \in\{0,1\}$ indicating whether edge e is in copy i.
\forall vertices u, v, w, copy i, ind vars $y_{u, v \rightarrow w}^{i} \in\{0,1\}$ indicating whether w is a common nbr of u and v in copy i.

Constraints:
partition: $\quad \forall$ edge $e, \sum_{i} x_{e}^{i}=1$
regular: \forall copy $i, \forall v, \quad \sum_{e \ni v} x_{e}^{i}=3$
Moore graph: $\quad \forall i, \forall u, v, \quad x_{\{u, v\}}^{i}+\sum_{w \neq u, v} y_{u, v \rightarrow w}^{i}=1$

Petersen Graph

\forall edge e and copy i, indicator variables $x_{e}^{i} \in\{0,1\}$ indicating whether edge e is in copy i.
\forall vertices u, v, w, copy i, ind vars $y_{u, v \rightarrow w}^{i} \in\{0,1\}$ indicating whether w is a common nbr of u and v in copy i.

Constraints:
partition: $\quad \forall$ edge $e, \sum_{i} x_{e}^{i}=1$
regular: \forall copy $i, \forall v, \quad \sum_{e \ni v} x_{e}^{i}=3$
Moore graph: $\quad \forall i, \forall u, v, \quad x_{\{u, v\}}^{i}+\sum_{w \neq u, v} y_{u, v \rightarrow w}^{i}=1$

These properties uniquely determine the Moore graphs.
Feasible solutions to the IP are the desired decompositions.

Feasibility Testing

To solve an IP, we use branch-and-bound:
Some variables are fixed to 0 or 1, and the LP relaxation is tested for feasibility.

If infeasible, then can't have that partial decomposition.

Feasibility Testing

To solve an IP, we use branch-and-bound:
Some variables are fixed to 0 or 1, and the LP relaxation is tested for feasibility.

If infeasible, then can't have that partial decomposition.

Problem! By just renaming vertices, get another solution.

> Presence of multiple sols by symmetry makes branch-and-bound slower!

Feasibility Testing

To solve an IP, we use branch-and-bound:
Some variables are fixed to 0 or 1 , and the LP relaxation is tested for feasibility.
If infeasible, then can't have that partial decomposition.

Problem! By just renaming vertices, get another solution.

> Presence of multiple sols by symmetry makes branch-and-bound slower!

Solution: Only check one rep from each equivalence class.

Canonical Representative

We pick a canonical rep from each equivalence class.
We test whether each partial decomp is a canonical rep.
Discard those that are not.

Canonical Representative

We pick a canonical rep from each equivalence class.
We test whether each partial decomp is a canonical rep.
Discard those that are not.

Determining the canonical rep is computationally expensive. (closely related to graph isomorphism)

Canonical Rep Functions

Read and Faradžev: Represent partial packing as a matrix. Define canonical rep as the max under lex order by rows.

Canonical Rep Functions

Read and Faradžev: Represent partial packing as a matrix. Define canonical rep as the max under lex order by rows.

For the Petersen graph P :

$$
\left[\begin{array}{llllllllll}
- & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
- & - & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
- & - & - & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
- & - & - & - & 0 & 0 & 0 & 0 & 1 & 1 \\
- & - & - & - & - & 0 & 1 & 0 & 1 & 0 \\
- & - & - & - & - & - & 0 & 1 & 0 & 1 \\
- & - & - & - & - & - & - & 0 & 0 & 1 \\
- & - & - & - & - & - & - & - & 1 & 0 \\
- & - & - & - & - & - & - & - & - & 0 \\
- & - & - & - & - & - & - & - & - & -
\end{array}\right]
$$

Canonical Rep Functions

Read and Faradžev: Represent partial packing as a matrix. Define canonical rep as the max under lex order by rows.

Use same definition for a graph packing.

$$
\left[\begin{array}{llllllllll}
- & 3 & 3 & 3 & 2 & 2 & 2 & 0 & 0 & 0 \\
- & - & 2 & 2 & 3 & 2 & 0 & 3 & 0 & 0 \\
- & - & - & 0 & 2 & 3 & 3 & 0 & 2 & 0 \\
- & - & - & - & 0 & 0 & 2 & 2 & 3 & 3 \\
- & - & - & - & - & 3 & 0 & 2 & 0 & 3 \\
- & - & - & - & - & - & 0 & 0 & 3 & 2 \\
- & - & - & - & - & - & - & 3 & 2 & 3 \\
- & - & - & - & - & - & - & - & 3 & 2 \\
- & - & - & - & - & - & - & - & - & 2 \\
- & - & - & - & - & - & - & - & - & -
\end{array}\right]
$$

Canonical Rep Functions

Read and Faradžev: Represent partial packing as a matrix.
Define canonical rep as the max under lex order by rows.
Better: order by copy 2 first, then copy 1.
$\left[\begin{array}{llllllllll}- & 2 & 2 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ - & - & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\ - & - & - & 0 & 0 & 0 & 2 & 2 & 0 & 0 \\ - & - & - & - & 0 & 0 & 0 & 0 & 2 & 2 \\ - & - & - & - & - & 0 & 2 & 0 & 2 & 0 \\ - & - & - & - & - & - & 0 & 2 & 0 & 2 \\ - & - & - & - & - & - & - & 0 & 0 & 2 \\ - & - & - & - & - & - & - & - & 2 & 0 \\ - & - & - & - & - & - & - & - & - & 0 \\ - & - & - & - & - & - & - & - & - & -\end{array}\right],\left[\begin{array}{llllllllll}- & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ - & - & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ - & - & - & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ - & - & - & - & 0 & 1 & 0 & 1 & 0 & 0 \\ - & - & - & - & - & 0 & 0 & 0 & 0 & 1 \\ - & - & - & - & - & - & 0 & 0 & 1 & 0 \\ - & - & - & - & - & - & - & 0 & 1 & 0 \\ - & - & - & - & - & - & - & - & 0 & 1 \\ - & - & - & - & - & - & - & - & - & 1 \\ - & - & - & - & - & - & - & - & - & -\end{array}\right]$
Allows us to fix the first copy.

Implementation

Originally implemented in C using the COIN LP library.
COIN: COmputational INfrastructure for Operations Research
www.coin-or.org
Open-source (but CPL), sponsored by IBM and ppl at Lehigh OSI: Open Solver Interface, for calling LP and IP solvers

Implementation

Originally implemented in C using the COIN LP library.
COIN: COmputational INfrastructure for Operations Research

Problems: C code was unwieldy for experimentation. Wanted to use GAP for group calculations.

Implementation

Originally implemented in C using the COIN LP library.
COIN: COmputational INfrastructure for Operations Research

Problems: C code was unwieldy for experimentation. Wanted to use GAP for group calculations.

Solution: Python and SAGE!

Python and SAGE

Pros:

- Python is a readable, expressive high-level language. Great for experimentation!
- SAGE unites many open programs in a coherent way.
- SAGE is free-cost and freedom.
- SAGE has its own useful math code (ie, NICE).
- SAGE is documented.
- PyCOIN Python interface to COIN generated by SWIG.

Python and SAGE

Cons:

- New language to learn.
- Missing from GAP interface: Stabilizer, CosetRep.
- PyCOIN has memory leaks.
- Python is slower than straight C.

Computational Results

Reimplemented in Python and SAGE over Thanksgiving 2007.

Run on a Pentium IV 3.4GHz Linux PC.
For Petersen graph, IP has 1215 vars, 3124 constraints
Without canonical rep func, takes 30 mins and 776 nodes.
With canonical rep func, takes a few secs and 66 nodes.

Computational Results

Reimplemented in Python and SAGE over Thanksgiving 2007.

Run on a Pentium IV 3.4GHz Linux PC.
For Petersen graph, IP has 1215 vars, 3124 constraints
Without canonical rep func, takes 30 mins and 776 nodes.
With canonical rep func, takes a few secs and 66 nodes.

For Hoffman-Singleton graph, IP has 361374 vars, 2529618 constraints

Work focusing now on refining the implementation details.

Other Tools?

McKay has a powerful canonical rep function in nauty. Implemented as NICE in SAGE by Miller.

To use it for search, need algo described yesterday by Miller.

Other Tools?

McKay has a powerful canonical rep function in nauty. Implemented as NICE in SAGE by Miller.

To use it for search, need algo described yesterday by Miller.
Edge-labeled version of NICE?

Other Tools?

McKay has a powerful canonical rep function in nauty.
Implemented as NICE in SAGE by Miller.

To use it for search, need algo described yesterday by Miller.
Edge-labeled version of NICE?

Use of cvxopt and GLPK?

Future Work

Resolve the Hoffman-Singleton decomp of K_{50}
Use method for other decomposition problems:
Conj of El-Zanati: If G is non-complete and has r edges, then $K_{2 r+1}$ decomposes into copies of G.

Smallest unknown case: $G=K_{6}-e$.

Future Work

Resolve the Hoffman-Singleton decomp of K_{50}
Use method for other decomposition problems:
Conj of El-Zanati: If G is non-complete and has r edges, then $K_{2 r+1}$ decomposes into copies of G.

Smallest unknown case: $G=K_{6}-e$.
Use in proofs?

Using SAGE for Search in Graph Theory

Stephen G. Hartke

Department of Mathematics
University of Nebraska-Lincoln
www.math.unl.edu/~shartke2
hartke@unl.edu

Joint work with Jamie Radcliffe

