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I want to tell you two stories which generalize the

Grassmannian/weak separation/plabic tiling story.

• Positroid cluster algebras.

• The octahedron recurrence.

The second story is basically a special case of the first. References

for the first are more available than the second.

Convention: Lower case letters (a, b, c, . . . ) are integers, upper

case letters (A, B, C, . . . ) are sets of integers and calligraphic

letters (A, B, C, . . . ) are collections of sets of integers.



Recall the Grassmannian

G(k, n) = GLk\{M ∈ Matk×n : rankM = k}.

It will be convenient to index the columns of M by Z, periodically

mod n. We write M[a,b] = (Ma Ma+1 · · · Mb).

Last time we discussed a cluster structure on

GLk\{M : det(M[a,a+k−1]) 6= 0 for all a}.

The condition det(M[a,a+k−1]) 6= 0 is equivalent to

rankM[a,b] = min(b− a+ 1, k).

We will be considering open positroid varieties , which are

subvarieties of G(k, n) of the form

Π◦ = GLk\{M : rankM[a,b] = rab}

for some given array rab. Every point of the Grassmannian is in

precisely one (open) positroid variety.



There are several different combinatorial objects which describe the

combinatorics of the rab.

Running example:

M =







1 1 1 0 0 0 1

0 0 1 1 0 0 0

0 0 0 0 0 1 1







Cyclic rank matrix:

rab 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 2 2 2 3 3
2 1 2 2 2 3 3 3
3 1 2 2 3 3 3 3
4 1 1 2 3 3 3 3
5 0 1 2 2 2 3 3
6 1 2 2 2 3 3 3
7 1 2 2 3 3 3 3



Grassmann necklace: Ia = {b mod n : rab > ra(b−1)}.

rab 1 2 3 4 5 6 7 8 9 10 11 12 13
1 1 1 2 2 2 3 3 I1 = {1, 3, 6}
2 1 2 2 2 3 3 3 I2 = {2, 3, 6}
3 1 2 2 3 3 3 3 I3 = {3, 4, 6}
4 1 1 2 3 3 3 3 I4 = {4, 6, 7}
5 0 1 2 2 2 3 3 I5 = {6, 7, 3}
6 1 2 2 2 3 3 3 I6 = {6, 7, 3}
7 1 2 2 3 3 3 3 I7 = {7, 1, 3}

Grassmann necklaces (I1, I2, . . . , In) are characterized by:

• #Ia = k for all a and

• Ia \ {a} ⊆ Ia+1.



Bounded affine permutations: A map f : Z → Z such that

f(i+ n) = f(i) + n and i ≤ f(i) ≤ i+ n and 1
n

∑n
i=1(f(i)− i) = k.

If Ia 6= Ia+1, then Ia+1 = (Ia \ {a}) ∪ {f(a)}.

If Ia = Ia+1 then either (1) Ma = 0, in which case a is not in any Ib

and f(a) = a or (2) Ma 6∈ span(Ma+1, . . . ,Ma+n), in which case a

is in every Ib and f(a) = a+ n.

I1 = {1, 3, 6} f(1) = 2

I2 = {2, 3, 6} f(2) = 4

I3 = {3, 4, 6} f(3) = 7

I4 = {4, 6, 7} f(4) = 10

I5 = {6, 7, 3} f(5) = 5

I6 = {6, 7, 3} f(6) = 8

I7 = {7, 1, 3} f(7) = 13



To repeat myself: Our combinatorial input is, equivalently, a cyclic

rank matrix rab, a Grassmann necklace Ia or a bounded affine

permutation f . The geometric output is a subvariety of the

Grassmannian:

Π◦ = GLk\{M : rankM[a,b] = rab}.

See Knutson-Lam-Speyer for a zillion geometric properties of these

spaces, and their closures.

Closed positroid varieties include as special cases the Schubert

varieties and the Richardson varieties. Open positroid varieties

include as special cases Fulton’s open matrix Schubert varieties and

the preimages of double Bruhat cells in GLn.

The closed positroid varieties are the projections of closed

Richardson varieties from Flagn.



Cluster structure on positroid varieties

Frozen variables The Plücker coordinates pIa , indexed by the

Grassmann necklace.

Compatability (unchanged) I and J are weakly separated if I \ J

and J \ I are noncrossing.

Set

M =

{

J ∈

(
[n]

k

)

: #(J ∩ [a, b]) ≤ rab for all [a, b]

}

.

An index J is in M if and only if pJ is not identically zero on Π◦.

(Some) cluster variables Plücker coordinates pJ for which

J ∈ M and J is weakly separated from all Ia.

Clusters Maximal weakly separated collections.

Mutation (unchanged) The Plücker relation

pSacpSbd = pSabpScd + pSbcpSad.



Building plabic tilings

Basically, the same story. Start with a weakly separated collection

C. Take v1, v2, . . . , vn at the vertices of a convex n-gon. Draw

I ∈ C at position vI :=
∑

i∈I vi.
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Building plabic tilings

Basically, the same story. Start with a weakly separated collection

C. Take v1, v2, . . . , vn at the vertices of a convex n-gon. Draw

I ∈ C at position vI :=
∑
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The outer boundary is still the polygonal path with vertices vI1 ,

vI2 , . . . , vIn . However, it need not be convex.



We draw strands the same way.
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The conditions for a strand diagram to be reduced are the same as

before.

The connectivity is now a f(a).



The previous construction definitely defines a cluster algebra.

What is its relation to positroid varieties? Here is what we know:

• Leclerc constructs a cluster structure on Π◦. Leclerc prefers not

to invert frozen variables, and there are still some unanswered

questions in that setting. But, if you invert the frozen variables,

Leclerc’s Theorem 4.5.(ii) says that his cluster algebra is the

coordinate ring of Π◦.

• There seem to be some subtleties regarding relating Leclerc’s

cluster structure to the one we discussed. I expect they will turn

out to be morally the same, but the details are nontrivial.

• The cluster algebra defined from plabic combinatorics is locally

acyclic (Muller-S.).

• For any maximal weakly separated collection C, the open subset

{x ∈ Π◦ : pI(x) 6= 0 for I ∈ C} is a torus. (Muller-S., to appear).



The octahedron recurrence

I’ll present this in a way that makes it appear a separate

generalization of the Grassmannian story, then reveal how to

encode it using positroids. I’ll be a little sloppy about the

underlying algebraic varieties.

Let

∆ = {(x1, x2, . . . , xn) ∈ [0, r]n :
∑

xi = k}.

We will be building a cluster algebra where some cluster variables

p(~x) are indexed by ~x ∈ ∆ ∩ Z
n.

For the Grassmannian case, take r = 1. Then the cluster variables

are indexed by (0, 1) vectors with sum k, which is equivalent to

k-element subsets of [n].

Convention: I write ~ over points of Zn or Rn.



Compatability We define ~x and ~y ∈ ∆ to be weakly separated if

{i : ~xi < ~yi} and {j : ~xj > ~yj} are weakly separated as subsets of

the circularly ordered [n].

Clusters Maximal weakly separated collections.

Mutation

p(~x+ ~ea + ~ec)p(~x+ ~eb + ~ed) =

p(~x+ ~ea + ~eb)p(~x+ ~ec + ~ed) + p(~x+ ~eb + ~ec)p(~x+ ~ea + ~ed)

for 1 ≤ a < b < c < d ≤ n. Here ~e1, ~e2, . . . , ~en are the standard

basis vectors in Z
n.



Names for this recurrence

p(~x+ ~ea + ~ec)p(~x+ ~eb + ~ed) =

p(~x+ ~ea + ~eb)p(~x+ ~ec + ~ed) + p(~x+ ~eb + ~ec)p(~x+ ~ea + ~ed)

The 6 points ~x+ ~ea + ~eb, ~x+ ~ea + ~ec, ~x+ ~ea + ~ed, ~x+ ~eb + ~ec,

~x+ ~eb + ~ec, ~x+ ~eb + ~ed and ~x+ ~ec + ~ed lie at the vertices of an

octahedron, hence the term octahedron recurrence .

When n = 4, a change of basis turns this into a recursion in Z
3:

p(~y + ~f1)p(~y − ~f1) = p(~y + ~f2)p(~y − ~f2) + p(~y + ~f3)p(~y − ~f3).

Hirota wrote it in this form, and it is often studied under the

names Hirota’s bilinear difference equation or Hirota-Miwa

equation . Saito seems to have been first to notice the

n-dimensional version.



Plabic tilings

Choose a linear map π : Rn → R
2 such that π(~e1), π(~e2), . . . , π(~en)

are the vertices of a convex n-gon.

Draw ~x in location π(~x).

Define ~x and ~y to be adjacent if ~x− ~y is of the form ea − eb.

Again, there are two kinds of cliques in the adjacency graph:

{~y + ea1
, ~y + ea2

, . . . , ~y + ear
}

{~z + eb1 , ~z + eb2 , . . . , ~z + ebs}

Color the cliques black and white to obtain a tiling of π(∆).

Triangulating the tilings gives sections of π : ∆ → π(∆).

Disclaimer/Apology I don’t believe this material has been

carefully written down anywhere.
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∆ = {(x1, x2, x3, x4) ∈ [0, 3]4 : x1 + x2 + x3 + x4 = 6}.
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Strands separate ~xj ≥ c and ~xj < c. In the example, yellow, red,

green and blue strands correspond to j = 1, 2, 3 and 4.



One often wants to think “in the limit as r → ∞, and k ≈ rn/2”,

in which case one obtains tilings of all of R2. This is some sort of

infinite rank cluster algebra.

One can then return to finite rank by imposing periodicity modulo

some rank n− 2 lattice. This gives rise to plabic tilings/alternating

strand diagrams on a torus. See Goncharov-Kenyon and

Eager-Franco for more.



Encoding the octahedron recurrence in a positroid

We were working with lattice points (~x1, ~x2, . . . , ~xn) in

{0, 1, 2, . . . , r}n.

We can encode these by lattice points in (0, 1)rn: Simply write

(

r−~xj

︷ ︸︸ ︷

0, 0, . . . , 0,

~xj

︷ ︸︸ ︷

1, 1, . . . , 1)

in the rj + 1 through r(j + 1) positions.

This gives a bijection between weakly separated collections for the

multidimensional octahedron recurrence, and weakly separated

collections for a certain positroid variety Π◦.

Π◦ should be something like the space of configurations of k partial

flags of dimensions (1, 2, . . . , r) in n-space.


