
Combinatorial underpinnings of Grassmannian cluster algebras

SAGE Days June 2015

David E Speyer
123

234

345

456567

678

178

128

127

137

136 135

134

167

156

145



Some of the most beautiful and important cluster algebras are the

cluster structures on the Grassmannian and related spaces. By

related spaces I mean positroid varieties, flag manifolds, (type A)

double Bruhat cells, configuration spaces of flags, the space of

solutions to the (multidimensional) octahedron recurrence (aka

discrete Toda lattice) .

There are numerous combinatorial devices which have been

invented to describe these cluster structures. They are elegant but

unwieldy. I would love it if SAGE had data structures to natively

work with them.

In this talk, I’ll talk about the cluster structure on the

Grassmannian itself. If people are interested, I would love to

explain how to get to all the other spaces.



G(2, n) – we want every cluster algebra to be this nice

Cluster variables: pab, for 1 ≤ a < b ≤ n.

Frozen variables: p12, p23, . . . , p(n−1)n, p1n .

Compatibility: pab and pcd may occur in a common cluster as

long as (a, b) and (c, d) are non crossing.

Mutation: pacpbd = pabpcd + padpbc for 1 ≤ a < b < c < d ≤ n.

Clusters: Triangulations of the n-gon.

B-matrix/Quiver: Connect neighboring chords

of the triangulation.
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Underlying space: ProjC[pab] is the Grassmannian

G(2, n) = GL2\{M ∈ Mat2×n : rank(M) = 2}.

We have pab = detMab. So inverting the frozen variables imposes

det(M12), det(M23), . . . , det(M(n−1)n), det(M1n) 6= 0.



Seeking an analogous story for G(k, n)

(Some) cluster variables: pI with I = {i1, i2, . . . , ik} ⊂ [n].

Frozen variables: p12···k, p23···k(k+1), . . . , p(n−k+1)···(n−1)n,

p(n−k+2)···n1, . . . , pn12···(k−1).

Compatibility Given I and J ∈
(

[n]
k

)

, we say I and J are weakly

separated if we can draw a chord separating I \ J and J \ I .
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134 and 235 are not

weakly separated.



Seeking an analogous story for G(k, n) continued

Mutation Our most basic mutation relation will be the three term

Plücker relation:

pSacpSbd = pSabpScd + pSbcpSad 1 ≤ a < b < c < d ≤ n.

Underlying space: ProjC[pI ] is the Grassmannian

G(k, n) = GLk\{M ∈ Matk×n : rank(M) = k}.

The cluster variable pi1i2···ik will be the Plücker variable

det(Mi1 · · ·Mik). Inverting the frozen variables imposes that

det(Mi Mi+1 · · · Mi+k−1) 6= 0.



So far we have described . . .

Some cluster variables: Plucker coordinates pi1i2···ik .

The rest of the cluster variables? I won’t talk about this, but see

Fomin and Pylyavskyy for some beautiful conjectures when k = 3.

Frozen variables: Cyclically consecutive minors pi(i+1)···(i+k−1).

Compatibility: Weak separation, meaning that I \ J and J \ I

are in separate arcs.

Mutation: Plücker relation pSacpSbd = pSabpScd + pSbcpSad.

Combinatorial model for clusters?

B-matrix/Quiver?

Underlying space: The Grassmannian G(k, n), or the open locus

det(MiMi+1 · · ·Mi+k−1) 6= 0 inside it.



History: Weak separation was first studied by LeClerc and

Zelevinsky, who showed that it is the condition for quantum minors

to quasi-commute on the flag manifold. See also Scott.

Notational note: We use lower case letters for integers: a, b, c, d,

k, n and capital letters for sets of integers: I , J , S. We will soon

use calligraphic letters C, I for collections of sets of integers.



A picture analogous to triangulations
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Let C be a weakly separated collection in
(

[n]
k

)

. (Soon we will

impose that it is maximal, but not yet.) We want to assign some

sort of two dimensional diagram to it.

Choose v1, v2, . . . , vn in R
2 at the vertices of a convex n-gon. For

I ∈
(

[n]
k

)

, set vI =
∑

i∈I vi. We draw I ∈ C in the location vI .



A picture analogous to triangulations continued
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Define I and J in C to be adjacent if #(I \ J) = #(J \ I) = 1.

In the adjacency graph, there are two sorts of cliques:

{K ∪ a1, K ∪ a2, . . . , K ∪ ar}

{L \ b1, L \ b2, . . . , L \ bs}



A picture analogous to triangulations continued
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The cliques form convex polygons which we color white and black.

We call this a plabic tiling .

Theorem (Oh-Postnikov-Speyer) The plabic tiling is a

2-dimensional CW-complex embedded in R
2. It is contained inside

the convex n-gon Hull(vI)I frozen. The plabic tiling fills the

interior of Hull(vI)I frozen if and only if C is maximal.



A picture analogous to triangulations continued
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Theorem (Oh-Postnikov-Speyer) The maximal weakly separated

collections are precisely those clusters of G(k, n) all of whose

elements are Plücker variables. We obtain the quiver of a cluster by

orienting the polygons cyclically, according to their color.



Useful algorithmic task Complete a weakly separated collection

to a maximal one.

Useful algorithmic task Draw these pictures.

Conjecture Every tiling of Hull(vi + vi+1 + · · ·+ vi+k−1) by

polygons of the form x+Hull(va1
, va2

, . . . , var
) and

y −Hull(vb1 , vb2 , . . . , vbs) is a plabic tiling.



Connections to polyhedral geometry
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Let ∆(k, n) be the hypersimplex Hull(ei1 + · · ·+ eik) ⊂ Rn. Let

the linear map π : ei → vi from R
n → R

2 take ei to vi, so π takes

the vertices of ∆(k, n) to the vI .



Connections to polyhedral geometry continued
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Using a triangulation of our tiling, we can obtain a piece-wise

linear section σ : π(∆(k, n)) → ∆(k, n), landing in the 2-skeleton of

∆(k, n). White triangles land in faces of the form

Hull(v + ei, v + ej , v + ek); black triangles land in faces of the form

Hull(v − ei, v − ej , v − ek).



Changing the triangulation of a plabic tiling moves our section σ

across a tetrahedral face of ∆(k, n).
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Moving across on octahedral face is mutation

{Sab, Sbc, Scd, Sad,Sac} ⇐⇒ {Sab, Sbc, Scd, Sad,Sbd}.
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Theorems about mutation

Theorem (Morally Postnikov) Any two maximal weakly separated

collections can be connected by a sequence of mutations.

Theorem (Danilov-Karzanov-Koshevoy, Oh-Speyer) Any two

maximal weakly separated collections A and B can be connected by

a sequence of mutations where all intermediate sets contains A∩ B.



Write d(A,B) for #(A \ B) = #(B \ A). The Oh-Speyer proof

shows that, if d(A, C) = r, then either

• We can find B with B ⊃ A ∩ C such that

d(A,B) = d(B, C) = r − 1 or else

• We can find B1 and B2 with B1,B2 ⊃ A ∩ C such that

d(A,B1) = d(B2, C) = r− 1 and B1 and B2 differ by a mutation.

This shows that it takes at most 2d(A,B) − 1 mutations to connect

A to B.

Open Problem What is the true bound for the number of

mutations needed?

Useful algorithmic task Given two maximal weakly separated

collections, find a chain of mutations linking them.



Open Problem Consider the simplicial complex whose vertices

are
(

[n]
k

)

and whose faces are the weakly separated collections.

We’ve shown that this complex is pure dimensional and that it

(and the link of every face within it) is connected in codimension 1.

What else can be said about its topology? See Hess and Hirsch for

some preliminary results; much left to do.



Open problem Let ∆ be a polytope in Rn and π : ∆ → Rd a

linear map. Billera, Kapranov and Sturmfels define a poset of

locally coherent strings , whose minimal elements are the

piecewise linear sections π(∆) → ∆ with image landing in the

d-skeleton of ∆. They posed the generalized Baues conjecture ,

that this poset is homotopy equivalent to a sphere, but this was

disproved by Rambau and Ziegler. Does it hold for the case of π

and ∆(k, n)?



Alternating strand diagrams

Suppose that we are given the topological picture of Σ(C) but not

the labeling of the vertices by
(

[n]
k

)

. How can we recover it?



Alternating strand diagrams continued
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We draw “strands” cutting across the corners of the tiles, moving

clockwise on white tiles and counterclockwise on black tiles. The

vertex labels to the left of the i-th strand contain i, the vertex

labels to the right do not.



Alternating strand diagrams continued

We can apply this recipe to an arbitrary bicolored tiling T of a disc

by polygons.

Theorem (Postnikov, Oh-Postnikov-Speyer) The tiling T is of the

form Σ(C) for some C if and only if

• The strands are reduced , meaning that the configurations

below do not occur:

• The strands have the correct connectivity , from i− k to i.



If I had more time . . .

I can keep the local aspects of our models and discard the global

conditions. For example, I can fit together polygons of the

x+Hull(va1
, va2

, . . . , vai
) and x−Hull(vb1 , vb2 , . . . , vbj ) but tile

other planar regions. This corresponds to reduced alternating

strand diagrams with connectivity other than i− k  i.

This leads us to positroids and positroid varieties, which include a

wide variety of interesting cluster algebras.

Thank you.



Historical notes

Scott originally worked with reduced alternating strand diagrams

(which she called Postnikov diagrams) without drawing the

underlying tiling.

Postnikov works with the duals of plabic tilings, which he calls

plabic (planar bicolored) graphs.

Scott proved that reduced alternating strand diagrams correspond

to cluster structures on G(k, n). Postnikov proved connectivity

under mutations for reduced plabic graphs.

Oh, Postnikov and Speyer proved that maximal weakly separated

collections correspond to reduced plabic graphs.

Danilov, Kharzanov and Koshevoy introduced a related formalism

of “generalized tilings” to model weakly separated sets. They were

the first to establish that every maximal weakly separated

collection has cardinality k(n− k) + 1.
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