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Scattering diagrams are piece-wise linear geometric objects which
can be used to visualize the exchange graph of a cluster algebra
and construct a canonical basis (in many cases).

Yet they may be defined without ever referring to cluster algebras!

At heart, they are a geometric visualization of commutation
relations inside a group E(B); equivalently, a commutative diagram
involving ring automorphisms called elementary transformations.



The initial ingredient is a skew-symmetric r X r integral matrix B.

f( ) _Z[ :tl :t1> "7let1][[y17y2a"'7yr]] J
Some notation! Let m € Z".
X=X xy 2 X, ged(m) = ged(my, my, ..., m;)

Def: Formal elementary transformations

For non-zero n € N', the formal elementary transformation E, g is
the automorphism of F(B) given by

Enp(x™) = (14 xB7yM)snx™  E,g(y") = y"

While ggc.i,(’;) must be an integer, it may be negative (that's ok!).



0

Throughout, J := [ 1

_01 ] is the simplest non-trivial B.

Examples!
Let B =J.

Eq0(x1) = (L +xy1)x, Eqo)(x)=x

E(l,o)(xl_l) — Xl(]- — Xoy1 + X22y12 = ngf’ dboc )
E0,1)E1,0)(2) = (1 + (1 + X Hy2)xay1)x

E(1,0)E(0,1)(x2) = (L + x2y1)x2




For any B, let n,n’ € N" be such that n-Bn’ = 1. Prove that

EnEn’ = En’ En+n’ En

as automorphisms of F.

This fundamental relation implies others. Let B, n, n’ as above.
E2Ey = En(EyEninEn)
= (EwEnywEn)EniwEn
= Ey E3+n’ E2n+n’E3

Let B, n,n’ as above. Prove that

3] 3 3 3
E3Ey = EyE3, v Esnyon Edn Esnpm ES

by repeatedly using the fundamental relation.




We also want to have infinite limits of automorphisms. Since Fisa

~

topological ring, Aut(F) has a topology of pointwise convergence.

E(B) := group generated by {E,g | n € N'} C Aut(F(B)) J

Elements of E(B) are infinite products of FETs and their inverses,
which have finitely many copies of any given element.

Exercise

Let B and n be arbitrary. Prove that
EnE2nE4nE8n e E2kn e
converges to the automorphism of F which sends

XM (1 — xB1y") "edn) x™ and o s




It will often be useful to work with E(B) to finite order. Let

m:i= <)/1,}/2’---,}/r> C ﬁ
Each E, g descends to an automorphism of j-:/md for all d. Then

E(B) = lim (group gen. by {E,g | n € N} C Aut(F F(B)/m ))

That is, we only need finite products when working to finite order.

Exercise

Let B, n, n’ be arbitrary. Prove that
EnEn = EyEp in Aut(F/m?)
if y"" € m?, and that

EnEy = EnEX  Ep in Aut(F/md), x = Toredrtm)
ged(n) ged(n')

. / /
if y2n+n ’yn+2n c md_




Use affine geometric objects to visualize relations in I/F:(B)

Commutative diagrams will become consistent scattering diagrams!
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Elementary walls

Given B, an (affine elementary) wall is a pair (n, W) of
@ a non-zero n € N', and

@ an affine polyhedral cone W C R" which spans an affine
hyperplane normal to n.

If r=2, W must be a line or a ray in R2.

Scattering diagrams

Given B, an (affine) scattering diagram is a multiset of walls
which, for each n, has only finitely many walls with that n.




Let B = J. Then an example scattering diagram is below.
n=(1,0)

n=(0,1)

n=(1,1)

Note that n is determined by W and gcd(n).
Lazyness: Unlabeled walls have ged(n) = 1.



Geometric/algebraic correspondence: idea

A wall is a ‘prism’ which acts by E, as
we pass through it from side n points in,
and by E; ! the other way.

Following this rule, we associate a path-ordered product to any
path p in © which avoids collisions of non-parallel walls.

Path-ordered product:
-1 =il
Eo.1)E0 B Eq 1y EanEoa)




A scattering diagram is consistent (resp. consistent mod m?) if
every pair of paths with the same end points have the same
path-ordered product in Aut(F) (resp. Aut(F/m)).

Sufficient condition: the POP of every small loop is the identity.

Example
P1 Path-ordered prod. of p1 = E(g,1)E(1,0)
Path-ordered prod. of p» = E(1,0)E(1,1)E(0,1)
P2 Consistent by fund. relation v/
Exercise

Prove that a scattering diagram consisting of walls supported on
hyperplanes is consistent mod m?.




Consistent scattering diagrams encode multiple identities in I@(B)

Example

Claim: The following scattering diagram with B = J is consistent.




Consistent scattering diagrams encode multiple identities in I@(B)

Example

Claim: The following scattering diagram with B = J is consistent.

/ E(2071) E10)




Consistent scattering diagrams encode multiple identities in I@(B)

Example

Claim: The following scattering diagram with B = J is consistent.

'GEER £ 1)E1.0)

ail = EonFaoFanEo




Consistent scattering diagrams encode multiple identities in I@(B)

Example

Claim: The following scattering diagram with B = J is consistent.

= Eo,1)E(1,0Ea.1)E(0,1)

= x = E@,0)E(1,1)E0,1)E1,1)E(0,1)




Consistent scattering diagrams encode multiple identities in I@(B)

Example

Claim: The following scattering diagram with B = J is consistent.

E(2071) E(l,O)

= Eo,1)E(1,0Ea.1)E(0,1)

= E@,0)E(1,1)E0,1)E1,1)E(0,1)
1 = E(l,O)E(2171)E(1,2)E(20,1)




A wall (n, W) is outgoing if {p +R>oBn} ¢ W for all p € R".

Consistent completion theorem [GSP, KS, GHKK]

Given a scattering diagram consistent mod m?, there is an
essentially unique way to add outgoing walls to make it consistent.

The proof is constructive, and adds new walls order-by-order.

o Given a scattering diagram consistent mod m9, compute the
path-ordered product around tiny loops mod m?+1.

@ Add outgoing walls to make these products trivial.
(It should not be obvious how to do this yet!)

@ Repeat, and take the limit as d — oo.

For consistency mod m?', stop after (d’ — d)-many steps.



Sage Goal 1

Implement the consistent completion algorithm to finite-order.




Sage Goal 1

Implement the consistent completion algorithm to finite-order.

Goal 1 Status: Crudely implemented for B = J.

Class: ScatteringDiagram(walls)

A finite-order scattering diagram for J, where walls is a list of
@ SDWall(n,point=p): a wall normal to n through p.
Some associated methods:

@ .improve() adds outgoing walls to increase order of
consistency by one.

@ .draw() plots the walls and collisions.

How do we actually find the outgoing walls for .improve()?



Wherever two walls collide with n1, ny such that n; - Bnp, = +1, the
fundamental relation says: add a wall with normal ny + no.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

o: an inconsistent collision

Consistent mod m?




Wherever two walls collide with n1, ny such that n; - Bnp, = +1, the
fundamental relation says: add a wall with normal ny + no.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

o: an inconsistent collision

Consistent mod m3




Wherever two walls collide with n1, ny such that n; - Bnp, = +1, the
fundamental relation says: add a wall with normal ny + no.

Let B = J, as usual. Start with 4 hyperplane walls.

o: an inconsistent collision

\ Consistent mod m#*
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fundamental relation says: add a wall with normal ny + no.
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Wherever two walls collide with n1, ny such that n; - Bnp, = +1, the
fundamental relation says: add a wall with normal ny + no.

Example

Let B = J, as usual. Start with 4 hyperplane walls.
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\ Consistent mod m®




Wherever two walls collide with n1, ny such that n; - Bnp, = +1, the
fundamental relation says: add a wall with normal ny + no.

Example

Let B = J, as usual. Start with 4 hyperplane walls.

o: an inconsistent collision

\ In fact, consistent!




Let B = J, as usual. Start with 4 hyperplane walls.

Consistent mod m?




Example

Let B = J, as usual. Start with 4 hyperplane walls.

<

Consistent mod m3




Example

Let B = J, as usual. Start with 4 hyperplane walls.

N

Consistent mod m*




Example

Let B = J, as usual. Start with 4 hyperplane walls.

Problem!
N (1,2) - J(1,0) =2

Consistent mod m*

y

We have gone as far as the fund. relation will take us...or have we?



What walls do we need to add to an arbitrary collision?

Key trick: all consistent collisions between pairs of walls reduces to
understanding certain consistent scattering diagrams for B = J.

D(b, c) := cons. comp. of {b- (e, ef),c- (e, €5 )} for B = J

These diagrams help us understand generic collisions as follows.

Local models for generic collisions (rough idea)

A collision between two walls (n1, W) and (n2, W) in a consistent
scattering diagram is locally equivalent to an affine transformation

of ® (g”éf:f), ;éa?,f))' though the wall multiplicities can change.




Simple example

Consider the consistent scattering diagram below.

TN




Simple example

Consider the consistent scattering diagram below.

n = (0,1)

m =(1,1)




Simple example
Consider the consistent scattering diagram below.

ny - Bnp ny - Bnp

ged(ny)  ged(m)

: L m = (0,1) -
- So, the collision should
= look locally like ©(1, 1).

np = (1,1)
D(1,1)

So, ©(1,1) tells us what we already know about consistent
completions of pairs of walls with n; - Bnp, = £1.



Great! So, how can we compute the other D(b, ¢)?

We can find ©(b, ¢) by taking the input walls, perturbing them,
computing the cons. comp., and then linearizing the walls.

Examples
D(1,2)
2 copies  Perturb Comp. Linear. |
’\
D(1,3)
3 copies |
Perturb Comp. Linear.
—_— —_—
%




Let's return to the problem from before!

Example (resumed)

W

A




Let's return to the problem from before!

Example (resumed)

o




Let's return to the problem from before!

Example (resumed)

Local
model 2 copies

2 copies




Let's return to the problem from before!

Example (resumed)

Local
model

2 copies  Perturb

2 copies

Dang it! Back where we started! Problem:

We need ©(2,2) to compute D(2,2)



Let's return to the problem from before!

Example (resumed)

Local
model

2 copies  Perturb

2 copies

Dang it! Back where we started! Solution:

We need ©(2,2) mod m? to compute D(2,2) mod m?9



A giant recursive computation

D (b, c) may be computed to any finite order, using only finitely
many scattering diagrams of the form ©(b, ¢’) to lower order.

Hence, approximating any ©(b, ¢) to any finite order is suitable to
computer implementation!

Since these are the building blocks of all consistent scattering
diagrams, this is a great place to start.

Sage Goal 1.A

Implement a table of finite-order approximations of scattering
diagrams of the form D(b, ¢), which dynamically increases each
diagram'’s order as needed by internal and external computations.




Goal 1.A status: Crudely implemented.

Class: SDTable()

Initializes a dictionary of model scattering diagrams.
@ .diagrams: A dictionary with key:value pairs
(b,c) : the current finite-order approx. of D(b, c)
@ .multiplicity((b,c),n): Returns the multiplicity of the
wall with normal n in ©(b, ¢).

e .mtable((b,c),d): Prints a table of multiplicities in (b, ¢)
with order < d.

Both methods create and improve diagrams as needed to achieve
the required order of consistency.




Sage Goal 1.B

Implement linear scattering diagrams with r = 3 with
corresponding . improve ().

Reasons linear scattering diagrams with r = 3 shouldn’t be so bad:
@ Collisions between walls are a line or ray.
@ Maybe visualized using stereographic projection.
@ Are completely determined by a certain 2-dimensional ‘slice’.

Intuitively, linear r = 3 is still ‘essentially 2 dimensional’.



Sage Goal 1.B

Implement linear scattering diagrams with r = 3 with
corresponding . improve ().

Reasons linear scattering diagrams with r = 3 shouldn’t be so bad:
@ Collisions between walls are a line or ray.
@ Maybe visualized using stereographic projection.
@ Are completely determined by a certain 2-dimensional ‘slice’.

Intuitively, linear r = 3 is still ‘essentially 2 dimensional’.

Goal 1.B Status: Not implemented (some stereo. proj. code).



Consider a scattering diagram in R3 with a wall for each
coordinate plane, visualized with a stereographic projection.

Consistent mod m?




Consider a scattering diagram in R3 with a wall for each
coordinate plane, visualized with a stereographic projection.

Consistent mod m3




Consider a scattering diagram in R3 with a wall for each
coordinate plane, visualized with a stereographic projection.

Consistent v




What about cluster algebras? Given B, let
D(B) := cons. comp. {(ej,e")|1<i<r}forB
A(B) := cluster algebra of B

Chamber: connected component in the complement of the walls.
Reachable: connected to positive orthant by a path which crosses
finitely-many walls.

Cluster combinatorics from ©(B) [GHKK]

There is a bijection

clusters of A(B) — reachable chambers of D(B)

which sends a cluster to its cone of g-vectors.

Equivalently, the g-fan is the union of the reachable chambers.



For each m € Z", there is a formal series ©,, called a theta
function whose coefficients count certain broken lines in D(B).

xo+1+x
X1X2

©0,-1) =

Cluster algebra from ©(B) [GHKK]

Every cluster monomial is the theta function of its g-vector, and
(in many cases) the theta functions are a basis for A(B).

Convergence of general theta functions is still an open question.



Sage Goal 2
Use finite-order approximations of ©(B) to study cluster algebras.

| have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that ©(B) has more than two reachable
components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the
non-reachable theta functions coincide with the notched arc
elements of Fomin, Shapiro, and Thurston?




Sage Goal 2
Use finite-order approximations of ©(B) to study cluster algebras.

| have two specific research questions in mind.

Sage Goal 2.A

Is there a B such that ©(B) has more than two reachable
components of open chambers?

Sage Goal 2.B

When B corresponds to the once-punctured torus, do the
non-reachable theta functions coincide with the notched arc
elements of Fomin, Shapiro, and Thurston?

Goal 2 status: 'tis a consummation devoutly to be wished.



