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1. Elementary transformations

1.1. Formal elementary transformations. Let B be an r× r skew-symmetric integral

matrix. Define the ring

F̂(B) := Z[x±1
1 , x±1

2 , ..., x±1
r ][[y1, y2, ..., yr]]

that is, formal power series in the variables y1, y2, ..., yr with coefficients in the ring of Lau-

rent polynomials in x1, x2, ..., xr. We use multinomial notation for the x and y variables;

that is,

∀m = (m1,m2, ...,mr) ∈ Zr, xm :=

r∏
i=1

xmii , ∀n = (n1, n2, ..., nr) ∈ Nr, yn :=

r∏
i=1

ynri

For n ∈ Nr, let gcd(n) denote the greatest common divisor of the coordinates of n. For

non-zero n ∈ Nr, define the formal elementary transformation En,B : F̂ −→ F̂ by1

En,B(xm) = (1 + xBnyn)
n·m

gcd(n)xm, En,B(yn
′
) = yn

′

Here, n ·m =
∑
i nimi denotes the Euclidean inner product. We will write En for En,B

when the matrix B is clear.

More generally, for d ∈ Q, we may define a fractional power Edn,B : Q⊗F̂ −→ Q⊗F̂ by

Edn,B(xm) = (1 + xBnyn)d
n·m

gcd(n)xm, Edn,B(yn
′
) = yn

′

Here, we explicitly use the formal series expansion

EdB,n(xm) =

( ∞∑
i=0

(
d n·m

gcd(n)

i

)
xiBnyin

)
xm

=

( ∞∑
i=0

(d n·m
gcd(n) )(d n·m

gcd(n) − 1) · · · (d n·m
gcd(n) − i+ 1)

i!
xiBnyin

)
xm

The following proposition is immediate.

Proposition 1.1.1. For all d, d′ ∈ Q, EdnE
d′

n = Ed+d′

n .

This is a private note. Please do not distribute.
1Note that n·m

gcd(n)
is an integer but may be negative; however, (1 + xBnyn)−1 exists in F̂ .

1
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In particular, since E0
n is the identity, each Edn is an automorphism with inverse E−dn .

The following lemma is useful for determining when the gcd(n) in En is trivial.

Lemma 1.1.2. If n · Bn′ = 1, then gcd(an+ bn′) = gcd(a, b) for all a, b ∈ Z.

In particular, if n · Bn′ = 1, then gcd(n) = gcd(n′) = 1.

The following proposition records the two most fundamental commutation relations.

Proposition 1.1.3. Let n, n′ ∈ Nr. (a) If n · Bn′ = 0, then

EnEn′ = En′En

(b) If n · Bn′ = 1, then

EnEn′ = En′En+n′En

Proof. Since B is skew-symmetric, n · Bn = n′ · Bn′ = 0 and n′ · Bn = −n · Bn′.
Case (a).

EnEn′(x
m) = En

(
(1 + xBn

′
yn
′
)
n′·m

gcd(n′)xm
)

= (1 + xBn
′
yn
′
)
n′·m

gcd(n′) (1 + xBnyn)
n·m

gcd(n)xm

By symmetry, En′En(xm) is the same.

Case (b). By the lemma, gcd(n) = gcd(n′) = gcd(n+ n′) = 1.

EnEn′(x
m) = En

(
(1 + xBn

′
yn
′
)n
′·mxm

)
= (1 + (1 + xBnyn)n·Bn

′
xBn

′
yn
′
)n
′·m(1 + xBnyn)n·mxm

= (1 + xBn
′
yn
′
+ xB(n+n′)yn+n′)n

′·m(1 + xBnyn)n·mxm

For comparison, En′En+n′En(xm) is equal to

= En′En+n′
(
(1 + xBnyn)n·mxm

)
= En′

(
(1 + (1 + xB(n+n′)yn+n′)−1xBnyn)n·m(1 + xB(n+n′)yn+n′)n·m+n′·mxm

)
= En′

(
(1 + xB(n+n′)yn+n′ + xBnyn)n·m(1 + xB(n+n′)yn+n′)n

′·mxm
)

= En′
(

(1 + (1 + xBn
′
yn
′
)xBnyn)n·m(1 + xB(n+n′)yn+n′)n

′·mxm
)

= (1 + xBnyn)n·m(1 + (1 + xBn
′
yn
′
)−1xB(n+n′)yn+n′)n

′·m(1 + xBn
′
yn
′
)n
′·mxm

= (1 + xBnyn)n·m(1 + xBn
′
yn
′
+ xB(n+n′)yn+n′)n

′·mxm

Hence, they coincide. �

Remark 1.1.4. In general, the commutation relations between En and En′ will depend on

n · Bn′, gcd(n) and gcd(n′) (see Theorem ??).

Exercise 1.1. Let n, n′ ∈ Nr such that n · Bn′ = 1. Show that
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(1) E2
nEn′ = En′E

2
n+n′E2n+n′E

2
n.

(2) E3
nEn′ = En′E

3
n+n′E3n+2n′E

3
2n+n′E3n+n′E

3
n.

Hint: This can be done by repeatedly using Proposition 1.1.3.

Exercise 1.2. Show that, if B =

[
0 1

−1 0

]
, then

Eb(1,0)E
c
(0,1)(x

(m1,m2)) =

∞∑
i=0

∞∑
j=0

(
cm2

j

)(
b(m1 + j)

i

)
x(m1+j,m2−i)y(i,j)

1.2. Reductions of formal elementary transformations. As is often the case with

formal rings, it is useful to be able to explore the behavior of F̂ and Edn to various bounded

orders.

Let I be a monomial ideal in Q[[y1, y2, ..., yr]]. Every transformation Edn descends to an

automorphism of the quotient F̂/I, and this automorphism is trivial if and only if yn ∈ I.

Naturally, it is easier to find commutation relations on F̂/I than on F̂ .

Lemma 1.2.1. Let n, n′ ∈ Nr. (a) If yn+n′ ∈ I, then

EnEn′ ≡ En′En mod I

(b) If y2n+n′ , yn+2n′ ∈ I, then

EnEn′ ≡ En′Eλn+n′En mod I, where λ :=
(n · Bn′) gcd(n+ n′)

gcd(n) gcd(n′)

Proof. Case (b). We evaluate EnEn′(x
m).

= En

(
(1 + xBn

′
yn
′
)
n′·m

gcd(n′)xm
)

= (1 + (1 + xBnyn)
n·Bn′
gcd(n)xBn

′
yn
′
)
n′·m

gcd(n′) (1 + xBnyn)
n·m

gcd(n)xm

=

(
1 + xBn

′
yn
′
+
n · Bn′

gcd(n)
xB(n+n′)yn+n′

) n′·m
gcd(n′)

(1 + xBnyn)
n·m

gcd(n)xm

=

(
(1 + xBn

′
yn
′
)
n′·m

gcd(n′) +
(n′ ·m)(n · Bn′)
gcd(n) gcd(n′)

xB(n+n′)yn+n′
)

(1 + xBnyn)
n·m

gcd(n)xm

=

(
(1 + xBn

′
yn
′
)
n′·m

gcd(n′) (1 + xBnyn)
n·m

gcd(n) +
(n′ ·m)(n · Bn′)
gcd(n) gcd(n′)

xB(n+n′)yn+n′
)
xm
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For comparison, En′E
λ
n+n′En(xm) is equal to

= En′E
λ
n+n′

(
(1 + xBnyn)

n·m
gcd(n)xm

)
= En′

(
(1 + xBnyn)

n·m
gcd(n) (1 + xB(n+n′)yn+n′)

λ
(n+n′)·m
gcd(n+n′)xm

)
= En′

(
((1 + xBnyn)

n·m
gcd(n) + λ

(n+ n′) ·m
gcd(n+ n′)

xB(n+n′)yn+n′)xm
)

= En′En(xm) +

(
λ

(n+ n′) ·m
gcd(n+ n′)

xB(n+n′)yn+n′
)
xm

We may use the previous computation to evaluate En′En(xm), and plug in.

=

(
(1 + xBnyn)

n·m
gcd(n) (1 + xBn

′
yn
′
)
n′·m

gcd(n′) − (n ·m)(n′ · Bn)

gcd(n) gcd(n′)
xB(n+n′)yn+n′

)
xm

Since the two sides coincide on a generating set for F̂/I, the morphisms coincide.

Case (a) follows from Case (b), because En+n′ is trivial mod I if yn+n′ ∈ I. �

1.3. The pronilpotent groups Ê(B) and ÊQ(B). Let E(B) and EQ(B) denote the sub-

groups of Aut(F̂(B)) generated by all formal elementary transformations, and all fractional

powers of formal elementary transformations (respectively). Tautologically, elements of

these groups are finite products of the form

Ed1n1
Ed2n2
· · ·Edknk

where the dis are integral or fractional, as appropriate.

The topology on F̂(B) induces a topology of pointwise-convergence on Aut(F̂(B)).

Ê(B) := closure of E(B) ∈ Aut(F̂(B)), ÊQ(B) := closure of EQ(B) ∈ Aut(Q⊗ F̂(B))

Naturally, we have an inclusion Ê(B) ⊂ ÊQ(B).

What do elements of Ê(B) look like? The group E(B) fixes every monomial ideal

I ⊂ Z[[y1, y2, ..., yr]], and so the action on F̂(B) descends to an action on F̂(B)/I. This

action is not faithful; let ImF̂(B)/I(E(B)) denote the image of this action in Aut(F̂(B)/I).

For any pair of monomial ideals I1 ⊂ I2, there is is a quotient map

ImF̂(B)/I1
(E(B)) −→ ImF̂(B)/I2

(E(B))

Proposition 1.3.1. The group Ê(B) is the inverse limit of ImF̂(B)/I(E(B)), taken over

all monomial ideals I with finite codimension.2

Similarly, ÊQ(B) is the inverse limit of the images of EQ(B) in Aut(Q⊗F(B)/I).

This indicates the following description of elements of ÊQ(B) as certain infinite products.

Consider a totally ordered set (S,≺), a finite-to-one map n : S → Nr, and a map d : S → Q.

2Note that a monomial ideal I has finite codimension if and only if it is an open subset of F̂(B).
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For any monomial ideal I ⊂ Z[[y1, y2, ..., yr]] with finite codimension, the subset

SI = {s ∈ S | yn(s) 6∈ I}

is finite. Define the ordered product mod I to be the automorphism of F̂(B)/I∏
s∈SI

E
d(s)
n(s)

where the product is ordered so that s1 ≺ s2 implies that En(s2) appears to the left of

En(s1). Define the ordered product to be the automorphism of F̂(B)∏
s∈S

E
d(s)
n(s)

given by the inverse limit of the ordered products mod I, as I runs over all monomial

ideals of finite codimension.

Proposition 1.3.2. The group ÊQ(B) is the set of ordered products of fractional powers

of formal elementary transformations (as automorphisms of Q ⊗ F̂(B)), and Ê(B) is the

subgroup of ordered products with integral powers.

Remark 1.3.3. Can Ê(B) or ÊQ(B) be characterized as the group of automorphism of F̂(B)

or Q⊗ F̂(B) which preserve some additional structure? As a non-example, the matrix B

determines a Poisson structure on F̂(B) (see Section ??), and elements of ÊQ(B) preserve

this structure, but not every Poisson automorphism is of this form.

Infinite products allow us to consider many more interest expressions involving formal

elementary transformations. The following identity is fundamental, though we lack the

techniques to prove it at the moment.

Proposition 1.3.4. Let n1, n2 ∈ Nr such that n ·Bn′ = 2 and such that gcd(an1 + bn2) =

gcd(a, b) for all a, b ∈ N. Then

En1En2 = En2En1+2n2E2n1+3n2 · · ·

( ∞∏
k=0

E2k(n1+n2)

)2

· · ·E3n1+2n2E2n1+n2En1

Exercise 1.3. For n ∈ Nr, show that the infinite product

EnE2nE4nE8n · · ·E2kn · · ·

converges to the automorphism which sends xm to

(1− xBnyn)−
n·m

gcd(n)xm

Exercise 1.4. For n ∈ Nr and f ∈ Z[x±Bn][[yn]], consider φ : F̂(B)→ F̂(B) given by

φ(xm) = fn·mxm, φ(yn
′
) = yn

′

Show that φ is an element of Ê(B).
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2. Elementary transformations: topics

2.1. Rational elementary transformations. The y-variables in F̂(B) may be regarded

as formal place-holders which allow us to make sense of infinite series and compositions

without worrying about convergence issues. If we are feeling bold, we may remove them.

Given an r × r skew-symmetric B, define

F(B) := Q(x1, x2, ..., xr)

and for any non-zero n ∈ Nr, define the rational elementary transformation

En,B(xm) = (1 + xBn)
n·m

gcd(n)xm, En,B(yn
′
) = yn

′

Note that a rational elementary transformation En is trivial if Bn = 0.

The two types of elementary transformation may be connected as follows. A formal ele-

mentary transformation En preserves the subring of F̂(B) consisting of formal series with

a rational representation f/g, such that the denominator g is not zero modulo 〈y1, ..., yr〉,
nor is it zero modulo 〈y1 − 1, ..., yr − 1〉. This subring then has a map to F which sends

xi to xi and yi to 1, and this map commutes with respective actions of En.

That is, we have the following diagram of rings.

F̂(B) = Z[x±1
1 , x±1

2 , ..., x±1
r ][[y1, y2, ..., yr]]

{
f/g | f, g ∈ Z[x±1

1 , ..., x±1
r , y1, ..., yr], g 6∈ 〈y1, ..., yr〉, g 6∈ 〈y1 − 1, ..., yr − 1〉

}

F(B) = Q(x1, x2, ..., xr)

Inclusion yi 7→ 1

For n ∈ Nr, there is an action of En on each of these three rings which commutes with

the two maps.

Any finite product of formal elementary transformations also determines a finite product

of rational elementary transformations which makes the above diagram commute, and so

E(B) has a well-defined action on F(B). However, an infinite ordered product of formal

elementary transformations may not preserve the subring in the diagram, and so Ê(B)

does not have a natural action on F(B). This is one of the main justifications for working

with formal elementary transformations instead of rational ones.

Remark 2.1.1. The elements of Ê(B) arising from scattering diagrams of cluster algebras

(see Section ??) may always determine well-defined automorphisms of F(B). We don’t

know, and would very much like to know.

Example 2.1.2. For any non-zero n ∈ Nr, the product of rational elementary transforma-

tions

EnE2nE4n · · ·E2kn · · ·
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converges to a well-defined automorphism of F(B) (see Exercise ??), but

EnE
2
2nE

4
4n · · ·E2k

2kn · · ·

does not.

2.2. Poisson structures. Given an r × r skew-symmetric matrix B, the associated ring

F̂ has a Poisson structure defined as follows.

{xm1 , xm2} = 0, {xm, yn} = (n ·m)xmyn, {yn1 , yn2} = (n1 · Bn2)yn1+n2

Proposition 2.2.1. Elementary transformations are Poisson automorphisms of F̂ :

En({f, g}) = {En(f), En(g)}

This is not an accident; the elementary transformations can actually be reconstructed

from the Poisson structure in characteristic zero. For any f ∈ F̂(B) in the ideal generated

by the y-variables, define the dilogarithm

Li2(f) :=

∞∑
k=1

fk

k2
∈ Q⊗ F̂

Proposition 2.2.2. For all n,m,

{−Li2(−xBnyn), xm} = (n ·m) log(1 + xBnyn)xm and {−Li2(−xBnyn), yn
′
} = 0

Hence, Edn is the exponential of the differential operator d
gcd(n){−Li2(−xBnyn),−}.

Remark 2.2.3. The proposition gives an geometric interpretation of Edn, as the time d
gcd(n)

flow along the Hamiltonian vector field of the function −Li2(−xBnyn) on Spf(F̂).

2.3. Compatible inclusions. Fix skew-symmetric integer matrices B1 and B2. A com-

patible inclusion from F̂(B1)→ F̂(B2) is a ring map of the form

φ(xm) = xAm, φ(yn) = x(B2C−AB1)nyCn

where A and C are |B2| × |B1| integer matrices, such that C has non-negative entries and

there is a non-zero integer λ with

A>C = λ · Id, C>B2C = λ · B1

Note that the first equation implies that A and C are inclusions, and so φ is also an

inclusion.

For a non-zero integer λ, a morphism φ of Poisson algebras is λ-Poisson if

λφ({−,−}) = {φ(−), φ(−)}

Proposition 2.3.1. A ring map φ : F̂(B1) → F̂(B2) is a compatible inclusion if and

only if it is a monomial λ-Poisson morphism which sends elements of the form xB1nyn to

elements of the form xB2n
′
yn
′
.
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Proposition 2.3.2. Given a compatible inclusion φ : F̂(B1) ↪→ F̂(B2), there is an inclu-

sion of topological groups

Φ : ÊQ(B1) ↪→ ÊQ(B2), Φ(EdB1,n) = E
d gcd(Cn)
λ gcd(n)

B2,Cn

which intertwines the respective action on Q⊗ F̂(B1) and Q⊗ F̂(B2); that is,

φ ◦ EdB1,n = Φ(EdB1,n) ◦ φ

Note that the inclusion Φ only depends on C and λ, and not on A.

The proposition is endlessly useful for describing products in ÊQ(B2) as potentially

simpler products in another group ÊQ(B1).

(1) For any B and any λ ∈ Z, there are compatible inclusions

φ : F̂(B) ↪→ F̂(λB), xm 7→ xλm, yn 7→ yn

Φ : ÊQ(B) ↪→ ÊQ(λB), EB,n 7→ E
1/λ
λB,n

(2) For any B and any λ ∈ Z, there are compatible inclusions

φ : F̂(λB) ↪→ F̂(B), xm 7→ xm, yn 7→ yλn

Φ : Ê(λB) ↪→ Ê(B), EλB,n 7→ EB,λn

(3) For any B and any r′ < r, let B′ be the upper left r′ × r′ submatrix of B and F

the lower left (r − r′)× r′ submatrix of B. Then there are compatible inclusions

φ : F̂(B′) ↪→ F̂(B), xm 7→ x(m,0), yn 7→ x(0,Fn)y(n,0)

Φ : Ê(B′) ↪→ Ê(B), EB′,n 7→ EB,(n,0)

Exercise 2.1. Let n, n′ ∈ Nr such that n · Bn′ = 1. Use Exercise ?? to show that

(1) EnE2n′ = E2n′En+2n′E2n+2n′En

(2) EnE3n′ = E3n′En+3n′E3n+6n′E2n+3n′E3n+3n′En

2.4. The tropical vertex group. One of the most important applications of Proposition

[?] is to reduce any computation involving a pair of elementary transformations to a

computation inside a fixed group Ê(J). Define

J :=

[
0 −1

1 0

]
For any B and any n1, n2 such that λ := n1 · Bn2 6= 0, there are compatible inclusions

φ : F̂(J) ↪→ F̂(B), x1 7→ xBn2 , x2 7→ x−Bn1 , y1 7→ yn1 , y2 7→ yn2

Φ : Ê(J) ↪→ Ê(B), EJ,(1,0) 7→ E
gcd(n1)/λ
B,n1

, EJ,(0,1) 7→ E
gcd(n2)/λ
B,n2

As a consequence, for any n1, n2 such that n1 · Bn2 6= 0, we have

EbB,n1
EcB,n2

= Φ(E
λb/ gcd(n1)
J,(1,0) E

λc/ gcd(n2)
J,(0,1) )
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This means that relations involving pairs of formal elementary transformations can all

be reduced to relations in Ê(J). The group Ê(J) was introduced in [?] who called it the

tropical vertex group.

Example 2.4.1. Proposition [?] is equivalent to the following identity in Ê(J).

E2
(1,0)E

2
(0,1) = E2

(0,1)E
2
(1,2)E

2
(2,3) · · ·

( ∞∏
k=0

E(2k,2k)

)4

· · ·E2
(3,2)E

2
(2,1)E

2
(1,0)

2.5. Decompositions. For any n0 ∈ Nr, define several subgroups.

Ên0
+ (B) := closed subgroup gen. by {En such that n · Bn0 > 0}

Ên0
− (B) := closed subgroup gen. by {En such that n · Bn0 < 0}

Ên0

|| (B) := closed subgroup gen. by {En such that n0 ∈ Qn}

Ên0

⊥ (B) := closed subgroup gen. by {En such that n · Bn0 = 0 and n0 6∈ Qn}

Remark 2.5.1. Important caveat! The definition of this decomposition appears to reverse

the order of n and n0 compared to [GHKK]. This is actually to compensate for the fact

that their skew-form corresponds to −B, not B.

Proposition 2.5.2. For every n0 ∈ Nr, there is a decomposition of groups

Ê(B) = Ên0
+ (B) · (Ên0

|| (B)× Ên0

⊥ (B)) · Ên0
− (B)

Let Ψn0
: Ê(B)→ Ên0

|| (B) be the projection onto the middle factor.

Proposition 2.5.3. The map ∏
n0 principle

Ψn0

 : Ê(B) −→
∏

n0 principle

Ên0

|| (B)

is a set bijection.

Example 2.5.4. Let B = J =

[
0 1

−1 0

]
, and let

G = E(1,0)E(0,1) = E(0,1)E(1,1)E(0,1)

If n0 = (1, 0), then

G = E(1,0)︸ ︷︷ ︸
G||

E(0,1)︸ ︷︷ ︸
G−

, Ψ(1,0)(G) = E(1,0)

If n0 = (1, 1), then

G = E(1,0)︸ ︷︷ ︸
G+

E(0,1)︸ ︷︷ ︸
G−

, Ψ(1,1)(G) = 1
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If n0 = (0, 1), then

G = E(1,0)︸ ︷︷ ︸
G+

E(0,1)︸ ︷︷ ︸
G||

, Ψ(0,1)(G) = E(0,1)

All other Ψn0
(G) are trivial.

Example 2.5.5. Let B =

 0 1 −1

−1 0 1

1 −1 0

, and let

G = E(0,1,0)E(1,1,0)E(0,0,1)E(1,0,0)

If n0 = (1, 0, 0), then

G = E(0,0,1)︸ ︷︷ ︸
G+

E(1,0,0)︸ ︷︷ ︸
G||

E(0,1,1)︸ ︷︷ ︸
G⊥

E(0,1,0)︸ ︷︷ ︸
G−

, Ψ(0,1,1)(G) = E(1,0,0)

If n0 = (0, 1, 1), then

G = E(0,1,0)E(1,1,0)︸ ︷︷ ︸
G+

E(1,0,0)︸ ︷︷ ︸
G⊥

E(1,0,1)E(0,0,1)︸ ︷︷ ︸
G−

, Ψ(1,0,0)(G) = 1
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3. Scattering diagrams

A scattering diagram may be regarded as a method for visualizing diagrams among

formal elementary transformations (including infinite products).

3.1. Scattering diagrams. A linear polyhedral cone in Rr is a subset given by a

finite intersection of half-spaces⋂
finite

{v ∈ Rr | α1v1 + α2v2 + · · ·+ αrvr ≥ 0}

Note that such a cone may be supported on a lower dimensional subspace (or even just the

origin). An affine polyhedral cone in Rr is an affine translation of a linear polyhedral

cone.

For a skew-symmetric matrix B,3 an elementary wall is a pair (n,W ), of

• a non-zero element n ∈ Nr, and

• an affine polyhedral cone W in Rr, whose affine span is w+ n⊥ := {w+m ∈ Rr |
n ·m = 0} for any w ∈W .

A wall (n,W ) is linear (resp. a hyperplane wall) if W is a linear polyhedral cone (resp.

an affine hyperplane).

Notice that W almost determines n; the set of n ∈ Nr normal to W is a semigroup

isomorphic to N.4 In particular, n is determined by W and the value of gcd(n). A wall

(n,W ) will be called principal if gcd(n) = 1; equivalently, if it generates the set of

non-negative integral normal vectors.

The normal vector n distinguishes between the two sides of the hyperplane affspan(W ).

We will refer to the side in which n points as the green side of W , and the other side as

the red side of W .

Definition 3.1.1. For a skew-symmetric matrix B, a scattering diagram D is a set of

walls of B, each with a multiplicity in Q, such that for any n ∈ Nr, there are at most

finitely-many walls of the form (n, ∗).

We specifically allow infinitely many walls of the form (∗,W ) for the same W . A linear

scattering diagram is one in which every wall is linear.

3.2. Transverse paths and path-ordered products. A transverse path p in D is a

piecewise-smooth5 path p : [0, 1]→ Rr such that

• p(0) and p(1) are not in any walls,

• whenever the image of p intersects a wall, it crosses it transversely, and

3While B does not appear in the definition of a wall, it is necessary to associate a formal elementary
transformation En to the wall, and so we shouldn’t consider walls without first having a matrix in mind.
4For general affine polyhedral cone, there may be no non-zero elements in Nr normal to W , but we won’t

consider potential walls of this form.
5It would be useful to weaken this as much as possible.
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• the image of p does not intersect the boundary of a wall or the intersection of two

walls which span different hyperplanes.6

A transverse path is finite if its image intersects finitely many walls in D.

A finite transverse path p determines a finite product of formal elementary transforma-

tions of F̂ , as follows. List the walls crossed by p in order:7

d1 · (n1,W1), d2 · (n2,W2), ..., dk · (nk,Wk)

and to each, associate the rational number

εi :=

{
+di if p crossed Wi from the green side to the red side

−di if p crossed Wi from the red side to the green side

}
Then the path-ordered product of p is

EεknkE
εk−1
nk−1

· · ·Eε1n1

Notice that we use the ‘function composition’ ordering, and not the left-to-right ordering.

In the same way, an infinite transverse path p also determines a (infinite) path-ordered

product of formal elementary transformations. By the finiteness condition in the definition

of scattering diagrams, this infinite product converges in Ê(B).

Two scattering diagrams D1 and D2 for the same B are equivalent if, for each path P

which is transverse in both scattering diagrams, the path-ordered products are the same.

The path-ordered product only depends on the transverse path up to homotopy.

Proposition 3.2.1. Given a scattering diagram D, let P : [0, 1]× [0, 1]→ Rr be a smooth

map such that P (t,−) is a transverse path for all t ∈ [0, 1]. Then the path-ordered products

of P (0,−) and P (1,−) coincide.

We say two transverse paths are equivalent if they may be realized as P (0,−) and

P (1,−) for such a map.

Definition 3.2.2. A scattering diagram is consistent if, for each pair of transverse paths

with the same endpoints, the associated path ordered products are equal.

Of course, checking every pair of paths is unnecessary.

Lemma 3.2.3. A scattering diagram D is consistent if there is a locally finite set of open

sets {Ui ⊂ Rr} such that

• the union
⋃
Ui is dense and simply connected, and

• any transverse loop contained in any Ui has trivial path-ordered product.

In particular, it suffices to check every ‘sufficiently small’ loop.

6This may be weakened to requiring that the normal vectors of the walls are multiples of each other,

without changing the consequences.
7The path p may simultaneously cross multiple walls, but only if those walls span the same hyperplane.

In this case, the walls may be listed in any order, since the corresponding automorphisms commute.
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3.3. Reduction of scattering diagrams. The scattering diagrams we are interested

typically have infinitely many walls, and so there are not enough finite transverse loops to

test for the ‘right’ notion of consistency. The simplest solution is to make sense of formal

limits of consistent finite scattering diagrams.

Let I be a monomial ideal in Z[[y1, y2, ..., yr]]. For each n ∈ Nr and d ∈ Q, Edn descends

to a well-defined automorphism of F̂/I, which is trivial when yn ∈ I. A finite scattering

diagram is consistent mod I if the path-ordered product associated to every transverse

loop is the trivial automorphism of F̂/I.

The reduction D/I of a scattering diagram D is obtained by deleting every wall of

the form (n,W ) with yn ∈ I. Clearly, if D is a consistent finite scattering diagram, then

D/I is consistent mod I. This idea can be extended to a criterion for the consistency of

infinite scattering diagrams.

Proposition 3.3.1. A scattering diagram D is consistent if and only if, for each monomial

ideal I ⊂ Q[[y1, y2, ..., yr]] with finite dimensional quotient, the reduction D/I is finite and

consistent mod I.

Exercise 3.1. Let m := 〈y1, y2, ..., yr〉. Prove that a hyperplane scattering diagram (one

consisting of hyperplane walls) is consistent mod m2.

Exercise 3.2. Let m := 〈y1, y2, ..., yr〉. Prove that a scattering diagram is consistent if and

only if it is consistent mod mi for all i.

3.4. Linearizing scattering diagrams. Given a scattering diagram D, its lineariza-

tion is the scattering diagram which replaces each wall in D with the corresponding linear

wall.

Proposition 3.4.1. If D is consistent (resp. consistent mod I), then its linearization is

consistent (resp. consistent mod I).

3.5. Consistent extension. One of the fundamental results regarding scattering dia-

grams is that any scattering has an essentially unique ‘minimal’ completion to a consistent

scattering diagram. A wall (n,W ) is outgoing if w − R≥0Bn 6∈W for every w ∈W .

Theorem 3.5.1. Let Din be a scattering diagram. Then there is a consistent scattering

diagram Dout such that Dout −Din consists of outgoing walls, and this Dout is unique up

to equivalence.

If the multiplicities in Din are positive integral, and there is a monomial ideal I such

that Din/I = Din and Din is consistent mod I, then all the multiplicities in Dout are

positive integral.

Call Dout the consistent completion of Din.
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We will most often apply the theorem to hyperplane scattering diagrams Din with

positive integral multiplicities. In this case, Din/m
2 = Din and Din is consistent mod m2,

so the second half of the theorem implies that Dout has positive integral multiplicities.

Exercise 3.3. Prove that consistent completion commutes with linearization.

3.6. Scattering diagrams of elements in Ê. A chamber in a scattering diagram is

a path-connected component of the complement of the walls. In a consistent scattering

diagram, there is at most one chamber which is on the green side (resp. red side) of every

wall; call this the green chamber (resp. the red chamber). If D is linear, then the green

chamber contains all-positive orthant R>0 and the red chamber contains the all-negative

orthant (and both chambers always exist).

Given a consistent scattering diagram D for B, any pair of chambers C1, C2 determine

a well-defined element of Ê(B), given by the path-ordered product of any transitive path

from C1 to C2. The characteristic automorphism of a consistent scattering diagram

D is the element E+,−(D) ∈ Ê(B) given the path-ordered product of any transitive path

from the green chamber to the red chamber.8

Theorem 3.6.1 (GHKK). The map of sets

E+,− : {consistent linear scattering diagrams for B}/equiv. −→ Ê(B)

is a bijection.

From the perspective of this theorem, a consistent linear scattering diagram is essentially

a visualization of many different factorizations of E+,−(D) into a (possibly infinite) product

of formal elementary transformations.

We may construct the inverse to E+,− as follows. Given g ∈ Ê(B), define the hyper-

plane scattering diagram

D(g) : {λ · (n, n⊥) | Ψn(g) = Eλn · (stuff involving Eαn for α 6= 1)}

Theorem 3.6.2. There is a commutative diagram

Ê(B) {Hyperplane scat. diag. for B}

{Consistent scat. diag. for B}/ equiv.

D(−)

Consistent completionE+,−

8In the rare case that there is no green or red chamber, the element Θ+,−(D) may be defined as the limit
of the characteristic automorphisms of all finite reductions.
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Remark 3.6.3. The key idea in the proof is that the element Ψn(E+,−) is the path-ordered

automorphism corresponding to the path −tn − εBn, where t ∈ R stays near 0, and ε is

small and contained in n⊥.9

4. Connection with cluster algebras

4.1. A-type scattering diagrams (simply laced). Let B be a skew-symmetric r × r
matrix. Construct a scattering diagram Din consisting of principal walls supported on

each coordinate hyperplane.

Din =

r∑
i=1

(ei, e
⊥
i )

Definition 4.1.1. The A-type scattering diagram D(B) associated to B is the consis-

tent completion of Din as above.

Remarkably, virtually every algebraic feature of the cluster algebra A(B) can be inter-

preted as a geometric feature of D(B).

Let x be a cluster in A(B). The explicit choice of an initial seed means every cluster

variable xi ∈ x has a well-defined g-vector, and that the g-vectors of x are a spanning

set of Zr. The g-vectors of x generate a simplicial cone in Rr.
A chamber is reachable if there is a finite transitive path from the green chamber.

Theorem 4.1.2 (GHKK). For each cluster x in A(B), the cone in Rr generated by the

g-vectors of x is the closure of a reachable chamber in D(B). This determines a bijection

of sets

clusters of A(B)
∼−→ reachable chambers in D(B)

The cluster monomials in x also have g-vectors, and the set

4.2. The characteristic automorphism. For any B, let

E+,−(B) := E(D(B)) ∈ Ê(B)

Whenever E+,−(B) converges to a rational automorphism of F(B), call the corresponding

automorphism the non-commutative Donaldson-Thomas series of B.

Q: When does the element E+,−(B) rationalize?

The easiest way to show this is to know that E+,−(B) ∈ E(B); that is, that it can be

written as a finite product of formal elementary transformations.

Proposition 4.2.1. If there is a finite transverse path in D(B) from the positive chamber

to the negative chamber, then E+,−(B) rationalizes.

Such a path is called a reddening path, and the corresponding sequence of transfor-

mations is called a reddening sequence.

9Technically, there may be no ε small enough. To be precise, we need to take the limit over finite reductions.
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A reddening path which only crosses walls from the green side to the red side may be

called a maximal green path. The corresponding maximal green sequence of formal

elementary transformations is notable for containing no inverses.

4.3. Connection with stability conditions. Let (Q,W ) be a quiver with potential,

and let B be the adjacency matrix of Q. A central charge is a group homomorphism

from Z : Zr → C such that Im(Z(Nr)) > 0. Here, the domain is identified with the

Grothendieck group of the Mod(J(Q,W )). This map splits into two pieces,

Re(Z), Im(Z) : Zr → R

which may be identified with elements of Rr.
Consider the oriented line

pZ(t) = Re(Z)− tIm(Z) ⊂ Rr

which we think of as a path in the scattering diagram D(B). Note that it travels from the

all-positive chamber to the all-negative chamber. This lines crosses a wall (n,W ) at time

t iff

Re(Z(n)) = tIm(Z(n))⇔ t =
Re(Z(n))

Im(Z(n))

The following justifies the terminology non-commutative Donaldson-Thomas series.

Theorem 4.3.1. Assume that the non-commutative Donaldson-Thomas series exists; that

is, E+,−(B) rationalizes. The infinitesimal contribution to the path-ordered product of pZ

at time t is equal to the non-commutative Donaldson-Thomas series of the Ct,Z ⊂ Nil(Q)

generated by the Z-semistable objects of slope t.

As a consequence, the rationalization of E+,−(D(B)) is equal to the non-commutative

Donaldson-Thomas series of Nil(Q), in the sense of Kontsevich-Soibelman.

Appendix A. Stereographic projection

Stereographic projection may be used to visualize fans in 3-dimensions. The particular

stereograhic projection I use may be given as the composition of three operations.

(1) Project R3 \ {0} onto the unit sphere centered at the origin.

(x, y, z) 7→

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

(2) Rotate the unit sphere so that the point
(

1√
3
, 1√

3
, 1√

3

)
goes to (0, 0, 1). This can

be given by the action of the matrix
0 −1√

2
1√
2

2√
6

−1√
6

−1√
6

1√
3

1√
3

1√
3
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(3) Stereographically project onto the plane (∗, ∗, 1) from the point (0, 0,−1).

(x, y, z) 7→
(

2x

1− z
,

2y

1− z

)
The composition of these three maps sends (g1, g2, g3) to(

√
2

g3 − g2√
g2

1 + g2
2 + g2

3 − g1 − g2 − g3

,

√
2

3

g2 + g3 − 2g1√
g2

1 + g2
2 + g2

3 − g1 − g2 − g3

)
We can check that this sends (1, 1, 1) to the origin and is undefined for (−g,−g,−g) when

g ≥ 0.

We are also interested in the projection of planes under this map. The plane normal to

the vector (c1, c2, c3) is given by

center =

(√
6

c2 − c3
c1 + c2 + c3

,
√

2
c2 + c3 − 2c1
c1 + c2 + c3

)
, radius = 2

√
c21 + c32 + c23
|c1 + c2 + c3|

We check that the plane normal to (1, 1, 1) goes to the circle centered at the origin with

radius 2√
3
. The stereographic projections of the coordinate planes are given by

center = (0,−
√

8), radius = 2

center = (
√

6,
√

2), radius = 2

center = (−
√

6,
√

2), radius = 2


