An F_5 Algorithm for Modules over Path Algebra Quotients and the Computation of Loewy Layers

Simon King [DFG project KI 861/2–1] June 02, 2015

My motivation for studying path algebras

Group cohomology package for Sage (K, D. Green), #18514 for upgrade

http://sage.math.washington.edu/home/SimonKing/Cohomology

- Modular cohomology rings for groups of order 128, HS, McL, Co_3 , Janko groups (not J_4), Mathieu groups (not M_{24}), ...
- It starts with computing minimal projective resolutions for $\mathbb{F}_{p}G$ $(|G| = p^{n})$, which can be a bottle neck \rightsquigarrow improve it!
- Extend scope: Resolutions for basic algebras \rightsquigarrow Ext algebras.

Computing minimal generating sets for kernels of module homomorphisms

- E. Green, Solberg, Zacharia [2001]: Use non-commutative Gröbner bases to compute kernels, and then minimise the generating set.
- Carlson [1997-2001]: Use linear algebra.
- D. Green [2001]: Heady standard bases, used in spkg.
- K [2014]: Non-commutative F₅ algorithm finds *Loewy layers* and avoids redundant computations. Soon in SageMath library.

Basic algebras? Loewy layers?

$\mathcal P$ path algebra for quiver Q over field K

- \mathcal{P} is a graded associative algebra, usually with zero divisors.
- We study path algebra quotients ψ: P → A, with a focus on Basic algebras: A finite dimensional, ker(ψ) ⊂ P²₊

Loewy layers of submodule $M \leq A^r$, A basic algebra

- $\mathsf{Rad}(\mathcal{A}) = \mathcal{A}_+ = \langle m \in \mathcal{A} | m \text{ arrow} \rangle$ (quadratic relations!)
- $\operatorname{Rad}^{0}(M) = M$ and $\operatorname{Rad}^{d}(M) = \operatorname{Rad}^{d-1}(M) \cdot \operatorname{Rad}(\mathcal{A})$
- The *d*-th Loewy layer $\mathcal{L}^{d}(M)$ is $\operatorname{Rad}^{d-1}(M)/\operatorname{Rad}^{d}(M)$

Motivation for studying Loewy layers of modules over basic algebras

Each K-basis of L¹(M) is a minimal generating set for M
 → replace heady algorithm in the spkg.

Outline

Computational setup

- Path algebra quotients
- Right modules
- Non-commutative F₅??

The F₅ signature

- Signed elements
- Signed reduction

3 Signed standard bases

- Critical pairs and S-polynomials
- The revised F₅ criterion

4 Reading off Loewy layers via signed standard bases

- Comparison and questions
- 5 Status of Implementation in SageMath

${\mathcal P}$ path algebra of a finite quiver ${\mathcal Q}$ over a field ${\mathcal K}$

- Monomials $\mathsf{Mon}(\mathcal{P}) \leftrightarrow \mathsf{oriented}$ paths in Q
- Degree of monomial \leftrightarrow path length
- Choose a *monomial ordering* > on Mon(\mathcal{P}). For $p \in \mathcal{P}$: Lm(p), Lc(p), Lt(p) = Lc(p) · Lm(p).

$\psi \colon \mathcal{P} \twoheadrightarrow \mathcal{A}$ path algebra quotient

- stdMon_{\mathcal{A}}(\mathcal{P}) = { $m \in Mon(\mathcal{P})$ | $\nexists p \in ker(\psi)$: Lm(p) = m}
- $Mon(\mathcal{A}) = \psi(stdMon_{\mathcal{A}}(\mathcal{P}))$ is a *K*-basis of \mathcal{A} .
- Lift λ : Mon $(\mathcal{A}) \rightarrow \operatorname{stdMon}_{\mathcal{A}}(\mathcal{P})$ with $\psi(\lambda(m)) = m$.
- \mathcal{A} inherits grading and monomial ordering from \mathcal{P} via λ .
- For $a, b, c \in Mon(\mathcal{A})$: $a|_{c}b$ (a divides b with small cofactor c) $\iff \lambda(a) \cdot \lambda(c) = \lambda(b)$. Easy to verify!

Free modules over path algebra quotients

• $F = \bigoplus_{i=1}^{r} v_i \mathcal{A}$ free right \mathcal{A} -module, and a right \mathcal{P} -module via ψ .

•
$$Mon(F) = \{ v_i \cdot a | i = 1, ..., r; a \in Mon(\mathcal{A}) \}.$$

• For $m = v_i \cdot a$, $n = v_j \cdot b \in Mon(F)$: $m|_c n \iff i = j$ and $a|_c b$

Standard (Gröbner) bases of $M = \langle \hat{g}_1, ..., \hat{g}_m \rangle \leq F$

- Fix compatible monomial orderings on \mathcal{P} , \mathcal{A} , F. Choices!
- G ⊂ M ≤ F is standard basis of M : ⇐⇒ leading monomials of M are divisible by leading monomials of G.
- If it terminates: Reduction of $x \in F$ by a standard basis is zero $\iff x \in M$.

Finite standard bases do not always exist.

Non-commutative F₅??

Buchberger vs. F_5 algorithm

Buchberger algorithm computes standard bases

Increments a generating set by "S-polynomials" of "critical pairs". Zero reductions of S-polynomials are a waste of time.

Faugère's F₅ for polynomial rings beats Buchberger's algorithm!

Signature keeps track how elements of G were computed. "Trivial syzygies" $f \cdot g = g \cdot f$ detect many redundant critical pairs.

There is no non-commutative F_5 ! Useless in fin. dim. algebras! Yes, there is, and it *is* useful!

- In a *quotient* $\psi \colon \mathcal{P} \twoheadrightarrow \mathcal{A}$, ker (ψ) provides us with trivial syzygies.
- Zero reductions provide *nontrivial* syzygies [Arri-Perry].
- Encode a huge vector space basis by a much smaller standard basis.
- Standard bases are not more than (useful) by-products of *F*₅ —the *signatures* provide essential information.

The F_5 signature

$\langle \hat{g}_1,...,\hat{g}_m angle = M \leq F$ right \mathcal{A} -module, and right \mathcal{P} -module via ψ

- Let $S = \bigoplus_{i=1}^{m} e_i \mathcal{P}$, with some compatible monomial ordering.
- Epimorphism $ev: S \rightarrow M$ of right \mathcal{P} -modules with $ev(\mathfrak{e}_i) = \hat{g}_i \forall i$.
- $f \in S$ describes $ev(f) \in M$ as an \mathcal{A} -linear combination of the \hat{g}_i .

Def:

A signed element $p \in_{s} U \subset M$ is a pair $p = (u, \eta)$ with $u \in U$ and $\eta \in Mon(S)$, such that $\exists f \in S : ev(f) = u$ and $Lm(f) = \eta$. Its unsigned element is u(p) := u and its signature $\sigma(p) := \eta$.

We only allow operations that keep track of signatures

- For $p \in_{s} M$ and $\tau \in Mon(\mathcal{P})$: $(u(p) \cdot \psi(\tau), \sigma(p) \cdot \tau) \in_{s} M$.
- If $p_1, p_2 \in_s M$, $\sigma(p_1) > \sigma(p_2)$: $(u(p_1) + u(p_2), \sigma(p_1)) \in_s M$. Otherwise, the addition won't be performed in the F_5 algorithm.

Signed reduction

η -reduction modulo G of $p \in F$, for $\eta \in Mon(S)$, $G \subset_s M \setminus \{0\}$

• p is η -reducible modulo $G \iff p \neq 0$, and

- ∃g ∈ G: Lm(u(g))|_c Lm(p)
 σ(g) · λ(c) < η
- Otherwise, p is η -irreducible modulo G.
- Replace p by $p \frac{Lc(p)}{Lc(u(g))}g \cdot c$ and iterate $\rightsquigarrow NF_{\eta}(p; G)$, which is η -irreducible modulo G. Termination?
- p is weakly η -reducible modulo $G \iff \dots \sigma(g) \cdot \lambda(c) \leq \eta$.

For $p \in_{s} M$, implicitly choose $\eta = \sigma(p)$

- p is *irreducible* iff u(p) is $\sigma(p)$ -irreducible modulo any signed $G \subset_s M$. *I.e.*, $\sigma(p)$ is optimal, there is no cheaper computation of u(p).
- NF(p; G) := $(NF_{\sigma(p)}(u(p); G), \sigma(p)) \in_s M$. Signature is preserved!

Signed standard bases

Def: $G \subset_s M \setminus \{0\}$ is a signed standard basis of M

 \iff Every irreducible $p \in_{s} M \setminus \{0\}$ is weakly $\sigma(p)$ -reducible modulo G.

Lemma

Let G be a signed standard basis of M.

• $p \in_s M \setminus \{0\}$ not irreducible $\implies NF(p; G) = (0, \sigma(p))$. Proof idea: p has irreducible reductor $\in_s M$.

•
$$u(G) = \{u(g) | g \in G\}$$
 is a standard basis of M .

Def: $G \subset_s M \setminus \{0\}$ is interreduced

 \iff Every $g \in G$ is not weakly $\sigma(g)$ -reducible modulo $G \setminus \{g\}$.

Critical pairs and S-polynomials

(g, c) critical pair of type T of G

 $g \in G$ with $\operatorname{Lm}(\operatorname{u}(g)) = v_i \cdot a$, $c \in \operatorname{Mon}(\mathcal{A})$ such that c is not a small cofactor of a, and if c'|c with $\operatorname{deg}(c') < \operatorname{deg}(c)$ then c' is a small cofactor of a. Chain criterion! $S(g,c) := (\operatorname{u}(g) \cdot c, \ \sigma(g) \cdot \lambda(c)) \in_s M$

(g,g') critical pair of type R of G

$$g \neq g' \in G$$
 with $\operatorname{Lm}(\operatorname{u}(g))|_c \operatorname{Lm}(\operatorname{u}(g'))$, but $\sigma(g) \cdot \lambda(c) > \sigma(g')$.
 $S(g,g') := \left(\operatorname{u}(g') - \frac{\operatorname{Lc}(g')}{\operatorname{Lc}(g)}\operatorname{u}(g) \cdot c, \ \sigma(g) \cdot \lambda(c)\right) \in_s M$

Buchberger style computation of signed standard bases

- Start with $G = \{(\hat{g}_1, \mathfrak{e}_1), ..., (\hat{g}_m, \mathfrak{e}_m)\}.$
- Repeatedly add S-polynomials of critical pairs and interreduce.
- Be upset if a zero reduction occurs.

The revised F_5 criterion (A. Arri and J. Perry)

Let $L \subset Lm(ker(ev))$.

Def: A critical pair (g, c) resp. (g, g') is normal wrt. L

 \iff g (and g') is irreducible modulo G, and $\sigma(g) \cdot \lambda(c) \notin L$.

Def: G has the F_5 property relative to L

 \iff For all normal critical pairs p = (g, c) resp. p = (g, g') rel. L, $\exists h \in G$ and a small cofactor d of Lm(u(h)) s.t.

2 $u(h) \cdot d$ is $\sigma(g) \cdot \lambda(c)$ -irreducible modulo *G*.

Learning from zero-reductions

If u(NF(p; G)) = 0 then $\sigma(p) \in Lm(ker(ev))$. Add its two-sided multiples to $L \rightsquigarrow$ weaken the F_5 property.

Theorem: [F₅ and rewritten criterion in Faugère's terminology]

Let $G \subset_s M \setminus \{0\}$ be finite interreduced, and for all i = 1, ..., m, either $\mathfrak{e}_i \in \operatorname{Lm}(\ker(ev))$ (\hat{g}_i is redundant generator), or $\exists g \in G$ with $\sigma(g) = \mathfrak{e}_i$. G signed standard basis of $M \iff$ it has the F_5 property.

F₅ algorithm

- Start with $G = \{(\hat{g}_1, \mathfrak{e}_1)..., (\hat{g}_m, \mathfrak{e}_m)\} \subset_s M$, and $L = \bigcup_{i=1}^m \mathfrak{e}_i \cdot \operatorname{Lm}(\ker(\psi)) \subset \operatorname{Lm}(\ker(ev))$. These are the trivial syzygies.
- For normal critical pairs rel. *L* violating *F*₅ (sorted): Compute the normal form of the S-polynomial
 - If non-zero: Add it to G, and interreduce G.
 - If zero: Add its signature to L.

Return G: It is an interreduced signed standard basis of M.

Rem: Each signature η of S-polynomials occurs at most once

Further crit. pairs for η will not be normal or will not violate F_5 !

Simon King, FSU Jena

Signed standard bases and Loewy layers

Let \mathcal{A} be a basic algebra and > negative degree ordering on $\mathcal{P}, \mathcal{A}, \mathcal{F}, \mathcal{S}$

- A finite-dimensional ⇒ F₅ algorithm terminates, for all >, since only finitely many signatures are not in L.
- Let $\tau_d \in Mon(S)$ maximal with $deg(\tau) = d \in \mathbb{N}$. Rad^d $(M) = \{f \in M : \exists \tilde{f} \in S : Lm(\tilde{f}) \leq \tau_d \text{ and } ev(\tilde{f}) = f\}$ Uses that \mathcal{A} is a basic algebra!
- Let G be an interreduced signed standard basis of M. The elements $u(g) \cdot c$ with

9
$$g \in G$$
, c small cofactor of $Lm(u(g))$

2
$$\sigma(g) \cdot \lambda(c) \leq \tau_d$$

 $(u(g) \cdot c \text{ is } \sigma(g) \cdot \lambda(c) \text{-irreducible modulo } G$

form a *K*-vector space basis $B_{\tau_d}(M, G)$ of $\operatorname{Rad}^d(M)$. Uses that \mathcal{P} is a path algebra!

• $B_{\tau_{d-1}}(M,G) \setminus B_{\tau_d}(M,G)$ yields a basis of $\mathcal{L}^d(M)$.

Comparison and open questions

Comparison with David Green's "heady standard bases"

- "Heady" only keeps track whether $deg(\sigma(p)) > 0$.
- "Heady" only computes $\mathcal{L}^1(M)$ (the "head" of M) and is state of the art for computing minimal generating sets.
- Critical pairs of type T are enough for the heady algorithm.
 But: Many zero reductions occur! → F₅ should be better.

Questions

- Termination for noetherian algebras of infinite dimension? (open)
- Negative degree orderings in infinite dimension? (weak NF)
- When does F₅ run without any zero reduction? (open)
- Other problems whose solution can be encoded in the signature, for suitable monomial ordering?
- Competitive implementation?

Status of Implementation in SageMath

Quiver paths: #16453, merged last week ightarrow sage.quivers.paths

- Implement the semigroup formed by the paths of a quiver, in Cython
- Encode a path as a long integer
- Concatenation etc. based on fast shift operations in GMP/mpir.

Path algebras: #17435, *needs review*

- Path algebra elements as pointed lists; four term orderings available
- Uses copy-by-identity for monomials and a kill list for terms
- Basic arithmetic faster than with LETTERPLACE.

F_5 implementation, only on my laptop yet

- Uses geobucket data structure for the general case...
- ... and matrices as an alternative in the finite dimensional case.
- Faster than heady algo in examples, but needs debugging.