
Sage for Mathematical and Cryptographic Research
http://www.sagemath.org

William Stein1 Martin Albrecht2

1Department of Mathematics
University of Washington, Seattle

2Information Security Group
Royal Holloway, University of London

Bristol, 10.November 2007

http://www.sagemath.org


Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



A Quote from Neil Sloane from This Week

Neil Sloane

From: N. J. A. Sloane <njas@research.att.com>
Date: 8 Nov 2007 06:28
Subject: Re: dumb question about installing pari-gp with fink

I would like to thank everyone who responded to
my question about installing PARI on an iMAC.

The consensus was that it would be simplest to install sage,
which includes PARI and many other things.

I tried this and it worked!

Thanks!

Neil

(It is such a shock when things actually work!!)



A Quote from John Voight’s MIT Talk Last Month

John Voight

“Having seemingly eliminated every alternative, we turn to SAGE. SAGE
includes Pari, so it has number field arithmetic. It uses Python, which is a very
friendly modern (object-oriented) programming language. It is free. It
incorporates Cython, which easily allows one to write optimized C code for
repeated tasks.

Despite being a relatively new system (so some functionality is limited), since it
is open source it is easy to contribute yourself. For example, Carl Witty recently
wrote a package for fast real root isolation. So even though one must think
about issues like how best to coerce between a C int, a Python integer, and a
SAGE Integer, there is a very active development community willing to help!

It has the further advantage that there is a package for distributed computing
called DSage...”



Mission Statement

Mission Statement

Provide an open source, high-quality, and free viable alternative to Magma,
Mathematica, Maple and MATLAB (in that order).

To achieve this do not reinvent the wheel but reuse as much existing building
blocks as possible and make sure the result is rigorously tested, easy to
modify by the end user and very well documented.

Also create a helpful environment for users to get help (mailinglists,
irc-channel, meetings, coding sprints).



What is Sage?

Sage is a mathematics software package developed by a worldwide community
of developers.

1 a distribution of the best free, open-source mathematics software
available (Sage 2.8.12 ships over 50 third-party packages) that is easy to
compile or install from binaries.

2 an interface to most free and commercial mathematics software packages
(e.g. Magma, Mathematica)

3 a huge new library, which uniformly covers the widest area of
functionality, including several new implementations not yet found
elsewhere.

Welcome to Sage:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
| SAGE Ve r s i on 2 . 8 . 1 2 , Re l e a s e Date : 2007−11−06
| Type notebook ( ) f o r the GUI , and l i c e n s e ( ) f o r i n f o rma t i o n .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

sage : 1 + 1
2



The Python Programming Language

Python is a powerful modern interpreted programming language.

“Python is fast enough for our site and allows us to produce
maintainable features in record times, with a minimum of developers,”
said Cuong Do, Software Architect, YouTube.com.

“Google has made no secret of the fact they use Python a lot for a
number of internal projects. Even knowing that, once I was an employee,
I was amazed at how much Python code there actually is in the
Google source code system.”, said Guido van Rossum, Google, creator
of Python.

“Python plays a key role in our production pipeline. Without it a project
the size of Star Wars: Episode II would have been very difficult to pull
off. From crowd rendering to batch processing to compositing, Python
binds all things together,” said Tommy Burnette, Senior Technical
Director, Industrial Light & Magic.



Python & Cython
http://www.python.org and http://www.cython.org

Python

easy for you to define your own data types and methods on it
(bitstreams, ciphers, rings, whatever).

very clean language that results in easy to read code.

easy to learn: e.g., “Dive into Python”
http://www.diveintopython.org/

a huge number of libraries: statistics, networking, databases,
bioinformatic, physics, video games, 3d graphics, numerical computation
(scipy), and serious “pure” mathematics (via Sage)

Cython [See Robert Bradshaw’s talk]

almost Python compiler

allows to mix C and Python which is crucial for fast execution speed

makes easy to use existing C/C++ libraries from Python.

http://www.python.org
http://www.cython.org
http://www.diveintopython.org/


Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



Overview I
see http://www.sagemath.org:9001/cando

Commutative Algebra commutative algebra over Fpn using, basic arithmetic
over arbitrary rings, very fast basic arithmetic over Fpn ,
quotient rings over multivariate polynomial rings, global & local
orderings

Linear Algebra fast linear algebra over Q; dense linear algebra over Fq, M4RI
(for F2), and custom code, and sparse linear algebra solver and
echelon form over Fq; numerical dense linear algebra; matrix
structure visualisation.

Group Theory permutation groups, abelian groups, matrix groups such as
classical groups over finite fields; word problem; subgroup
enumeration.

Combinatorics many basic functions, many of Sloane’s functions are
implemented; symmetric functions, Young Tableaux, and
combinatorial algebras.

Graph Theory construction, directed graphs, labelled graphs. 2d and 3d
plotting of graphs using an optimised implementation of the
spring layout algorithm. constructors for all standard families of
graphs, graph isomorphism testing, automorphism group
computation

http://www.sagemath.org:9001/cando


Overview II
see http://www.sagemath.org:9001/cando

Number Theory compute Mordell-Weil groups of (many) elliptic curves using
both invariants and algebraic 2-descents, a wide range of
number theoretic functions, optimised modern quadratic sieve
for factoring integers n = p · q, optimised implementation of
the elliptic curve factorisation method, modular symbols for
general weight, character, Γ1(N), and ΓH(N), modular forms
for general weight ≥ 2

Elliptic Curves all standard invariants of elliptic curves over Q, division
polynomials, etc. , compute the number of points on an elliptic
curve modulo p for all primes p less than a million in seconds,
optimised implementation of the Schoof-Elkies-Atkin point
counting algorithm for counting points modulo p when p is
large, complex and p-adic L-functions of elliptic curves. Can
compute p-adic heights and regulators for p < 100000 in a
reasonable amount of time.

p-adic Numbers extensive support for arithmetic with a range of different
models of p-adic arithmetic.

Plotting very complete 2d plotting functionality similar to
Mathematica’s, limited 3d plotting via an included ray tracer.

http://www.sagemath.org:9001/cando


Novel Functionality

free re-implementation of Nauty’s graph isomorphism algorithm

certain models of arithmetic with p-adic numbers & polynomial rings over
them

task farming distributed computing (DSage)

modular symbols, modular forms, modular abelian varieties

computing with Dirichlet characters

Eisenstein series enumeration

arithmetic on jacobians of curves

quaternion algebras

p-adic L-functions of elliptic curves in a lot of generality, with proven
precision

fast computation of p-adic heights on elliptic curves

Coleman integration

Duursma zeta functions of linear codes

permanents of rectangular matrices over general rings



Web-based Notebook Interface
public notebooks available at http://www.sagenb.org

graphical user
interface

plotting

LaTeX
typesetting

remote access

worksheet
sharing

interface to
3rd party
systems like
e.g. Magma

http://www.sagenb.org


Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



Basic Finite Field Arithmetic

finite fields Fpn for arbitrary sizes of p and n < 232.

finite extension fields of order < 216 implemented using Zech logs (fast!)

larger Fq implemented using Pari’s (slow) or NTL’s (reasonable)
polynomial representation

another option: mpFq

http://hyperelliptic.org/SPEED/slides/Gaudry Thome mpFq.pdf

sage : k.<a> = GF(2ˆ8 ) ; k
F i n i t e F i e l d i n a o f s i z e 2ˆ8
sage : P.<x> = GF( 3 ) [ ’ x ’ ]
sage : p = P . random element ( deg r ee =5); p
2∗xˆ5 + 2∗xˆ2 + 2∗x + 1
sage : p/2 # monic
xˆ5 + xˆ2 + x + 2
sage : k.<a> = GF(3ˆ5 , modulus=p )
sage : k . modulus ( )
xˆ5 + xˆ2 + x + 2

http://hyperelliptic.org/SPEED/slides/Gaudry_Thome_mpFq.pdf


Dense Linear Algebra over Finite Fields

specialised implementation for prime fields

uses LinBox’s BLAS arithmetic (see Clement Pernet’s talk) for some
operations

Todo: extension fields (LinBox supports them!)

sage : A = random matr ix (GF(127) ,2000 ,2000)
sage : B = random matr ix (GF(127) ,2000 ,2000)
sage : %t ime C = A. m u l t i p l y l i n b o x (B)
CPU t imes : u s e r 4 .15 s , s y s : 0 .00 s , t o t a l : 4 .15 s
Wal l t ime : 4 .19 # t ime depends on i n s t a l l e d BLAS

sage : t ime A. e c h e l o n i z e ( )
CPU t imes : u s e r 4 .30 s , s y s : 0 .03 s , t o t a l : 4 .34 s
Wal l t ime : 4 .51



Dense Linear Algebra over GF(2)

M4RI package by Gregory Bard

uses packed representation and Gray-Codes

multiplication & echolonisation O(n3/log(n))

fastest implementation up to 5.000 × 5.000 – 10.000 × 10.000 matrices

sage : A = random matr ix (GF(2) ,20000 ,20000)
sage : t ime A. e c h e l o n i z e ( )
CPU t imes : u s e r 48 .06 s , s y s : 0 .04 s , t o t a l : 48 .10 s
Wal l t ime : 48 .46

Strassen (O(n2.7)) support in the works



Sparse Linear Algebra over Finite Fields

generic sparse matrix classes and a special Fp class

custom code for computing the reduced row echelon form

sage : A = random matr ix (GF(127) ,10000 ,10000 , d e n s i t y =3/10000)
sage : t ime A. e c h e l o n i z e ( )
CPU t imes : u s e r 53 .13 s , s y s : 0 .15 s , t o t a l : 53 .28 s
Wal l t ime : 59 .18
sage : A . rank ( )
9307

sparse matrix solver via LinBox (see Clement Pernet’s talk):

sage : A = random matr ix (GF(127) ,3000 ,3000 , d e n s i t y =10/3000)
sage : t ime c = A\b
CPU t imes : u s e r 35 .12 s , s y s : 0 .59 s , t o t a l : 35 .71 s
Wal l t ime : 38 .75
sage : (A∗c ) == b
True

Ralf Weinmann working on integrating John Cremonas fast g0n sparse
matrix code



Matrix Visualisation
A.visualize structure()



Factoring

factor uses PARI

sage : t ime f a c t o r ( n e x t p r ime (2ˆ40) ∗ nex t p r ime (2ˆ300) , v e r bo s e =0)
1099511627791 ∗
203703597633448608626844568840937816105146839366593625063614044935438129\
9763336706183397533
CPU t ime : 3 .77 s , Wal l t ime : 3 .82 s

ecm uses GMP-ECM by Paul Zimmermann et al.

sage : t ime ecm . f a c t o r ( n e x t p r ime (2ˆ40) ∗ nex t p r ime (2ˆ300) )
[1099511627791 , 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533]
CPU t ime : 0 .19 s , Wal l t ime : 0 .62 s

qsieve uses Bill Hart’s quadratic sieve implementation

sage : v , t = q s i e v e ( n e x t p r ime (2ˆ90)∗ nex t p r ime (2ˆ91) , t ime=True )
sage : p r i n t v , t [ : 4 ]
[1237940039285380274899124357 , 2475880078570760549798248507] 4 .00

DistributedFactor combines ECM, qsieve and trial division; written by Yi Qiang
and Robert Bradshaw.



Lattice Reduction

The NTRUEncrypt Public Key Cryptosystem is based on the hard mathematical
problem of finding very short vectors in lattices of very high dimension.
Generate a ntru-like lattice of dimension (400 × 400), with the coefficients hi

chosen as random 130 bits integers and parameter q = 35:0BBBBBBBBBB@

1 0 . . . 0 h0 h1 . . . hd−1

0 1 . . . 0 h1 h2 . . . h0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 hd−1 h0 . . . hd−1

0 0 . . . 0 q 0 . . . 0
0 0 . . . 0 0 q . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 0 0 . . . q

1CCCCCCCCCCA
sage : from sage . l i b s . f p l l l . f p l l l import g e n n t r u l i k e
sage : A = g e n n t r u l i k e (200 ,130 ,35)
sage : t ime B = A. LLL ( ) # use s fpLLL by Damien S t e h l e
CPU t ime : 14 .91 s , Wal l t ime : 15 .06



Elliptic Curves over Fq I

sage : e = E l l i p t i c C u r v e (”37a” ) # Cremona Labe l
sage : E = e . c h ang e r i n g (GF(997 ) )
sage : show (E . p l o t ( ) )



Elliptic Curves over Fq II

sage : k = GF( nex t p r ime (10ˆ7) )
sage : E = E l l i p t i c C u r v e ( k ,
. . . [ k . random element ( ) , k . random element ( ) ] )
sage : E
E l l i p t i c Curve d e f i n e d by yˆ2 = xˆ3 + 8412640∗ x + 9921951
ove r F i n i t e F i e l d o f s i z e 10000019
sage : P = E . random element ( )
sage : P . o r d e r ( )
5002257
sage : E . c a r d i n a l i t y ( )
10004514
sage : 2∗P + P
(251564 : 3681217 : 1)



Graph Theory

builds on NetworkX (Los Alamos’s Python graph library)
graph isomorphism testing – Robert Miller’s new implementation
databases
2d and 3d visualization

sage : D = graphs . Dodecahedra lGraph ( )
sage : D. show3d ( )

sage : E = D. copy ( )
sage : gamma = SymmetricGroup ( 2 0 ) . random element ( )
sage : E . r e l a b e l (gamma)
sage : D. i s i s o m o r p h i c (E)
True
sage : D. r a d i u s ( )
5



Polynomial Arithmetic

Sage mostly currently uses NTL by default

FLINT – world’s fastest univariate polynomial arithmetic for essentially
every bit size and degree (Bill Hart’s talk).

sage : from sage . l i b s . f l i n t . fmpz po l y import Fmpz poly
sage : deg = 31 ; c o e f f =64
sage : f=Fmpz poly ( [ ZZ . random element (2ˆ c o e f f ) f o r i n [ 1 . . deg +1] ] )
sage : g=Fmpz poly ( [ ZZ . random element (2ˆ c o e f f ) f o r i n [ 1 . . deg +1] ] )
sage : t ime f o r i n x range ( 10ˆ5 ) : w = f ∗g
CPU t ime : 1 .55 s , Wal l t ime : 1 .67 s

PARI takes 9.85 seconds to do the exact same computation.

Sage wrapping NTL takes 9.24 seconds

Magma takes 4.68 seconds



Commutative Algebra

Very fast basic arithmetic for multivariate polynomials over Fq.

Fast Gröbner basis computation and highlevel ideal operations

Specialised very fast Gröbner basis computation in

F2[x1, . . . , xn]/〈x2
1 + x1, . . . , x

2
n + xn〉

very soon (see Michael Brickenstein’s talk)

sage : P.<x , y , z> = Po lynomia lR ing (GF(32003) , 3 )
sage : p = ( x + y + z + 1)ˆ20 # the Fateman f a s tmu l t benchmark
sage : q = p + 1
sage : t = cput ime ( )
sage : r = p∗q
sage : cput ime ( t )
0 .13

Magma takes 0.360 seconds to do the same calculation



Algebraic Attacks

Sage provides equation systems for algebraic cryptanalysis:

sage : s r = mq. SR(2 , 1 , 1 , 4 , g f2=True )
sage : F , s = s r . p o l y nom i a l s y s t em ( )
sage : s
{k003 : 1 , k002 : 1 , k001 : 1 , k000 : 1}
sage : gb = F . g r o e b n e r b a s i s ( )
sage : V = I d e a l ( gb ) . v a r i e t y ( ) ; V [ 0 ]
. . .
k001 : 1 , k000 : 1 , k003 : 1 , k002 : 1 ,

. . .
sage : s r = mq. SR(10 , 4 , 4 , 8 , s t a r=True , aes mode=True )
sage : F , s = s r . p o l y nom i a l s y s t em ( ) ; F
Po l ynomia l System wi th 8576 Po l ynom ia l s i n 4288 V a r i a b l e s
sage : F . g r o e b n e r b a s i s ( ) # i f t h i s t e rm i n a t e s => AES broken :−)



Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



How Did Sage Come About?

Sage is:

1 A huge amount of extremely hard mostly volunteer work and

2 Refusal to acknowledge reality, i.e., that Sage is impossible.



Seriously, how did Sage really come about?

1997–1999 (Berkeley) HECKE – C++ (modular forms)

1999–2005 (Berkeley, Harvard) I wrote over 25,000 lines of Magma code.
Magma is incredibly powerful!

But the languages of Magma, Mathematica, and Maple are
old-fashioned and painful compared to Python.

I need to be able to see inside and change anything in my
software in order to be the best in the world at my research.

Magma is frustrating and is a bad longterm investment.

Feb 2005 I released SAGE-0.1 — a Python math library.

Feb 2006 UCSD SAGE Days 1 – SAGE 1.0.

October 2006 U Washington SAGE Days 2 workshop.

March 2007 UCLA SAGE Days 3 workshop.

June 2007 U Washington SAGE Days 4 workshop.

October 2007 Clay Math Institute SAGE Days 5 workshop.

Now U. Bristol and the Heilbronn Institute SAGE Days 6

Now SAGE-2.8.12; over 100 contributors to SAGE.



How Do We Do That? I

Arithmetic GMP, MPFR, Givaro
Commutative Algebra SINGULAR (libSINGULAR)
Linear Algebra LinBox, M4RI, IML, fpLLL
Cryptosystems GnuTLS, PyCrypto
Integer Factorization FlintQS, ECM
Group Theory GAP
Combinatorics Symmetrica
Graph Theory NetworkX
Number Theory PARI, NTL, Flint, mwrank
Numerical Computation GSL, Numpy, Scipy
Calculus, Symbolic Comp. Maxima, Sympy
Lattice Polytopes PALP
User Interface Sage Notebook, jsmath, Moin wiki, IPython
Graphics Matplotlib, Tachyon, libgd, Java3d
Networking Twisted
Databases ZODB, SQLite, Python Pickles
Programming Language Python, Cython (compiled)



Overall VERY roughly 4.5 million lines of source code and estimated several
hundred person-years.





SAGE: Lots of new code

Unique lines of code and docstrings:

$ cat *.py */*.py ... */*/*/*.pxd |sort |uniq |wc -l

189082

Unique input lines of autotested examples:

$ cat *.py */*.py ... */*/*/*.pxd | grep "sage:"

| sort |uniq |wc -l

26711

Doctesting coverage:

$ sage -coverage .

...

Overall weighted coverage score: 34.3%

Total number of functions: 17424



Upcoming Workshops

Jan 5–9, 2008: Sage Days 6 1
4
, AMS meeting in San Diego (booth, sprints)

Feb 5–9, 2008: Sage Days 7, IPAM (confirmed and funded!)

Feb 29–March 4, 2008: Sage Days 8, UT Austin

June 2008: Sage Days 9 in Seattle (tentative)

August 2008: Sage Days 10 in Vancouver at SFU (tentative)



The Sage Release Process

1 All enhancement proposals, bug reports and tasks are available on
http://trac.sagemath.org.

2 All discussions happen in the open on public mailing lists and on a public
chat channel.

3 One release per week on average: release often, release early.

4 Changes happening to the main repository can be tracked in real time
online

5 Code is refereed by a board of editors: Journal of Sage.

6 If code is rejected by the release maintainer every developer can appeal to
this board of editors and they vote on the inclusion of the patch.

http://trac.sagemath.org


How We Talk

sage-devel development discussions, 213 subscribers, ca. 800 messages per
month

sage-support support requests, 187 subscribers, ca. 200 messages per month

sage-forum general discussions, 148 subscribers, low traffic

sage-newbie basic questions about e.g. programming, 33 subscribers, low
traffic

#sage-devel irc.freenode.net irc channel, very busy during bug squashes,
usually at least two Sage developers around



Outline

1 Introduction

2 Capabilities

3 Examples

4 How ?

5 Cons and Pros



Shortcomings of Sage

1 There are currently about a thousand users of Sage; our goal is to have
ten thousand serious users by 2009.

2 Sage is not robust enough.

3 Sage is sometimes much slower than Magma, Mathematica, etc. (and
sometimes faster, to be fair).

4 Sage is new – there are too many bugs.

However, if something is wrong you can fix it, and the Sage mailing lists and irc
channel are extremely active and helpful (over 1000 messages a month in all
lists!).



Advantages of Sage

1 Sage is the only serious general purpose mathematics software that uses a
mainstream programing language (Python).

2 Sage is the only program that allows you to use Maple, Mathematica,
Magma, etc., all together.

3 Sage has more functionality out of the box than any other open source
mathematics software.

4 Sage has a huge, active, and well rounded developer community:
[sage-devel] mailing list has over 200 subscribers, working very hard on
everything from highly optimised arithmetic, to high school education, to
computing modular forms.

5 Sage development is done in the open. You can read about why all
decision are made, have input into decisions, see a list of every change
anybody has made, etc. This is different than the situation with Magma
and Mathematica. Users love this.



Questions?

Thank You!


	Introduction
	Capabilities
	Examples
	How ?
	Cons and Pros

