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Path Algebra quotients

Q: Finite quiver (directed graph; loops and cycles allowed)

Vertices v1, ..., vq, arrows α1, ..., αr

Path algebra A = kQ (k a field)

k-basis: All directed paths (lists of arrows) in Q

Multiplication ↔ concatenation and distributivity
Product is zero if paths don’t match!

Radical: Rad(A) = 〈α1, ..., αr 〉

Basic algebras

An ideal I ≤ A is admissible
⇐⇒ ∃N ∈ N : Rad(A)N ⊂ I ⊂ Rad(A)2

B = A/I (I admissible. vi , αj ∈ B) is called basic algebra.

Radical Rad(B) = JB = 〈α1, ..., αr 〉 ≤ B
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Nice properties of basic algebras

Why to consider basic algebras?

G a finite group, k = k of characteristic p | |G | =⇒ kG is Morita
equivalent to a basic algebra.
 Study representation theory, cohomology etc. via basic algebras

Simple and projective modules

Simple modules: Si := viB/viJB. Dimension one!

Projective covers: Pi := viB � Si → 0.

Recall: Projective modules are direct summands of free modules.
The Pi are the projective indecomposable modules (PIMs) of B.

In Sage? Trac ticket #12630

Jim Stark: Python code for acyclic quivers/algebras/modules.
SD 49: Refactor code, add categories/coercion. Later: Cythonize
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Ext groups
Yoneda product
Highly non-commutative algebras in Sage

Ext groups

M,N right-B modules. Rad(M) = M · JB for basic algebras!

Projective resolution of M

· · · dn+1−→ Pn
dn−→ Pn−1 → · · ·

d1−→ P0
ε−→ M → 0, such that

P0,P1, ... projective B modules

ker(ε) = im(d1) and ker(di ) = im(di+1) for i = 1, 2, ...

Resolution is minimal ⇐⇒ im(di ) ⊆ Rad(Pi−1) for i = 1, 2, ...

Ext group ExtnB(M,N)

:=
{
Pn

f−→ N | f |im(dn+1) = 0
}
/ {f = g ◦ dn | ∃g : Pn−1 → N}

If resolution minimal and N simple:

ExtnB(M,N) = HomB(Pn,N),
since the image of the radical in a simple module is zero.
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Highly non-commutative algebras in Sage

Ext algebras: The Yoneda product

Let Q∗
η−→ N → 0 be a minimal projective resolution, N simple.

Lifting f ∈ ExtnB(M,N) to a chain map

· · · Pn+1 Pn

· · · Q1 Q0 N 0

dn+2 dn+1

f

δ2 δ1 η

f0f1

Multiplying f with g ∈ ExtrB(N, L), L simple module

g · f is given by Pn+r
fr−→ Qr

g−→ L ∈ Extn+r
B (M, L)

Ext algebra Ext∗(B) =
⊕q

i ,j=1

⊕∞
n=0 ExtnB(Si ,Sj)

Associative and graded, but very much non-commutative
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Highly non-commutative algebras in Sage

Finitely presented graded associative algebras in Sage

Ext∗(B) is a graded associative algebra
 can represent it as quotient of a free associative algebra
modulo weighted homogeneous relations

Idea of Letterplace (Levandovskyy–LaScala):
Represent degree-≤ d part of a free algebra in a large
commutative ring, whose size grows with d .

Singular’s Letterplace can only deal with homogeneous
elements and a fixed degree bound.

Sage’s Letterplace wrapper (in Sage–5.5) has adaptive
degree bound and can use positive integral degree weights
Bad: Polynomial rings were kept alive in memory. Needed:

Weak cache for UniqueRepresentation and coercion maps
 Trac tickets #715, #11521, #12215, #12313, #14159, ...
fix of a memory corruption in Singular
fix of a bug in Cython related with weak references
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Signed standard bases
The F5 criterion
Get Loewy layers from the F5 signature

How to compute minimal projective resolutions

Recall: Computing Syzygies with standard bases

Let G0 be a standard basis for I , hence, B = A/〈G0〉.

Represent Pn,Pn−1 as sub-modules of As ,At , modulo G0.

For x1, ..., xs generators for Pn, let pi ∈ At represent dn(xi ).

Let M ⊂ At ⊕As be generated by {pi − xi | i = 1, ..., s}
G standard basis of M for elimination order  Elements of G
vanishing in the first block yield generators of ker(dn).

How to get a minimal generating set of ker(dn)?

E. Green, Solberg, Zacharia: Minimization as a second step

Carlson: Linear algebra is faster!

D. Green: “Heady Buchberger algorithm”
This is currently fastest, see p group cohomology.
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Basic setup for Faugère F5

Algebra:

Mon(A)↔ paths, with admissible monomial ordering.

ψ : A� B = A/I ,
Mon(B) = {ψ(m̃) : m̃ standard monomial, i.e., m /∈ lead(I )}
λ : Mon(B)→ Mon(A) — lift,
λ(m) = m̃ unique standard monomial with ψ(λ(m̃)) = m

For m, c, n ∈ Mon(B): m|cn ⇐⇒ λ(n) = λ(m) · λ(c)
In this case, c is called a small cofactor of m.

Modules:

F = B⊕r ⊃ M = 〈ĝ1, ..., ĝm〉B, right–A–module via ψ

E = A⊕m, free generators e1, ..., em,
Mon(E ) = {ei ·m : m ∈ Mon(A), i = 1, ...,m}, mon. ordering

ev : E � M — epi of right–A–modules, ev(ei ·m) = ĝi · ψ(m)
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Signed standard bases

x = (u(x), σ(x)) ∈ M ×Mon(E ) is a signed element of M
x ∈s M :⇐⇒ ∃x̃ ∈ E : ev(x̃) = u(x) and lm(x̃) = σ(x).
Similarly G ⊂s M

g ∈s M reductor of x ∈s M
:⇐⇒ lm(u(g))|c lm(u(x)), σ(g) · λ(c) < σ(x)

x ∈s M irreducible :⇐⇒ it has no reductor in M

Elementary reduction

x ↘
(

u(x)− lc(u(x))
lc(u(g)) u(g) · c, σ(x)

)
∈s M

NF(x ;G ) ∈s M: Iterate elementary reductions wrt. G .
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Computing signed standard bases

Let g ∈ G ⊂s M, c ∈ Mon(B), L ⊂ lead(ker(ev))

Critical pairs with cofactor c: Getting new leading monomials

Type T: (“toppling” in D. Green’s work)

c is not small cofactor of lm(u(g)), but all proper divisors are.

L-normal pair ⇐⇒ g irreducible wrt. G , and σ(g) · λ(c) /∈ L

S-polynomial S := (u(g) · c, σ(g) · λ(c)) ∈s M

Type S: (“S-polynomial” in the unsigned world)

∃g ′ ∈ G : lm(u(g))|c lm(u(g ′)) and σ(g ′) < σ(g) · λ(c)

L-normal pair ⇐⇒ g , g ′ irred. wrt. G , and σ(g) · λ(c) /∈ L

S-polynomial S :=
(

u(g) · c− lc(g ′)
lc(g) g

′, σ(g) · λ(c)
)
∈s M

Not L-normal ⇒ there is a “smaller” construction for u(S)!
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The F5 criterion—including Faugère’s “rewritten criterion”

Let L ⊂ lead(ker(ev)), let G ⊂s M \ {0} be interreduced

Assume ∀i with ei /∈ lead(ker(ev)) ∃g ∈ G with σ(g) = ei

The F5 criterion holds for an S-polynomial S
:⇐⇒ ∃g ∈ G and a small cofactor c ∈ Mon(B) of lm(u(g)) with

σ(g) · λ(c) = σ(S), and

(u(g) · c, σ(S)) ∈s M has no reductor in G .

Remark

If not lm(u(g))|c lm(u(S)), then lm(u(S)) can be obtained by a
different construction that is smaller than σ(S).

Theorem

G is a signed standard basis of M ⇐⇒
F5 criterion holds for S-polynomials of all L-normal critical pairs.
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F5 algorithm variant by Arri–Perry: Learn from mistakes

L0 := {ei ·m : i = 1, ...,m, m ∈ lead(I )} ⊂ lead(ker(ev))
trivial Syzygies

For x ∈s M, G ⊂s M: u(NF(x ;G )) = 0
=⇒ ∃y ∈s M : u(y) = u(x) and σ(y) < σ(x)
=⇒ σ(x) ∈ lead(ker(ev))

F5 algorithm

Start: Set G ← {ĝ1, ..., ĝr}, L← L0

While ∃ L-normal critical pair with S-polynomial S violating F5:

x ← NF(S;G )

If u(x) = 0: L← L ∪ (σ(x) ·Mon(P))

Else: G ← interred(G ∪ {x}) (interred may add to L)

Return G
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Application: Read off Loewy layers

The d-th Loewy layer is Ld(M) := Radd−1(M)/Radd(M)
Recall Radd(M) = M · JdB for basic algebras B

The k-bases of L0(M) are the minimal generating sets of M!

Hypothesis: G is an interreduced signed standard basis of M
wrt. a negative degree monomial ordering.
Denote [f ] for the equ. class of f ∈ Radd−1(M) in Ld(M).

Theorem

The set of all [u(g) · c] with g ∈ G and small cofactors c ∈ MonB
of lm(u(g)) such that

deg (σ(g) · λ(c)) = d − 1 and

(u(g) · c, σ(g) · λ(c)) ∈s M has no reductor in G .

forms a k-vector space basis of Ld(M).
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Results of a toy implementation in Sage

Why to compute Ext algebras?

H∗(G ; k) = Ext∗(S0,S0), S0 trivial representation.

Presentation degree for Ext versus cohomology:

M11 mod 2: Degree 5 versus degree 10
L3(2) mod 2: Degree 3 versus degree 6
J1 mod 7: Degree 7 versus degree 22
J1 mod 11: Degree 11 versus degree 38
J1 mod 19: Degree 15 versus degree 22

Efficiency: F5 versus Heady

A9 mod 3, 2nd and 3rd term of min. proj. resolution

Heady needs > 1800 and < 2600 zero reductions.
F5 can do with < 1300 and < 1500 zero reductions.

F5 computes resolutions out to degree 13 for A5 mod 3 and
2nd block of M12 mod 5 without any zero reduction.
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