{{{id=1| 3 + 2 /// 5 }}}

This is my first equation:

$$\int_a^b e^x dx$$

{{{id=6| /// }}} {{{id=2| 4 + 5 /// 9 }}} {{{id=5| /// }}} {{{id=3| x^2 + 4 - 3*x /// x^2 - 3*x + 4 }}} {{{id=4| /// }}} {{{id=8| search_doc("Young") /// ^CTraceback (most recent call last): File "", line 1, in File "_sage_input_14.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("c2VhcmNoX2RvYygiWW91bmciKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/tmp/tmpA45Zg3/___code___.py", line 2, in exec compile(u'search_doc("Young")' + '\n', '', 'single') File "", line 1, in File "/home/saliola/Applications/sage-5.6/local/lib/python2.7/site-packages/sage/misc/sagedoc.py", line 1048, in search_doc **kwds) File "/home/saliola/Applications/sage-5.6/local/lib/python2.7/site-packages/sage/misc/sagedoc.py", line 806, in _search_src_or_doc if re.search(string, line, flags)] KeyboardInterrupt __SAGE__ }}} {{{id=9| Partitions /// }}} {{{id=10| P = Partitions(15) /// }}} {{{id=11| P /// Partitions of the integer 15 }}} {{{id=12| P.cardinality() /// 176 }}} {{{id=13| P.an_element() /// [14, 1] }}} {{{id=14| P.random_element() /// [6, 2, 2, 1, 1, 1, 1, 1] }}} {{{id=15| P.list() /// [[15], [14, 1], [13, 2], [13, 1, 1], [12, 3], [12, 2, 1], [12, 1, 1, 1], [11, 4], [11, 3, 1], [11, 2, 2], [11, 2, 1, 1], [11, 1, 1, 1, 1], [10, 5], [10, 4, 1], [10, 3, 2], [10, 3, 1, 1], [10, 2, 2, 1], [10, 2, 1, 1, 1], [10, 1, 1, 1, 1, 1], [9, 6], [9, 5, 1], [9, 4, 2], [9, 4, 1, 1], [9, 3, 3], [9, 3, 2, 1], [9, 3, 1, 1, 1], [9, 2, 2, 2], [9, 2, 2, 1, 1], [9, 2, 1, 1, 1, 1], [9, 1, 1, 1, 1, 1, 1], [8, 7], [8, 6, 1], [8, 5, 2], [8, 5, 1, 1], [8, 4, 3], [8, 4, 2, 1], [8, 4, 1, 1, 1], [8, 3, 3, 1], [8, 3, 2, 2], [8, 3, 2, 1, 1], [8, 3, 1, 1, 1, 1], [8, 2, 2, 2, 1], [8, 2, 2, 1, 1, 1], [8, 2, 1, 1, 1, 1, 1], [8, 1, 1, 1, 1, 1, 1, 1], [7, 7, 1], [7, 6, 2], [7, 6, 1, 1], [7, 5, 3], [7, 5, 2, 1], [7, 5, 1, 1, 1], [7, 4, 4], [7, 4, 3, 1], [7, 4, 2, 2], [7, 4, 2, 1, 1], [7, 4, 1, 1, 1, 1], [7, 3, 3, 2], [7, 3, 3, 1, 1], [7, 3, 2, 2, 1], [7, 3, 2, 1, 1, 1], [7, 3, 1, 1, 1, 1, 1], [7, 2, 2, 2, 2], [7, 2, 2, 2, 1, 1], [7, 2, 2, 1, 1, 1, 1], [7, 2, 1, 1, 1, 1, 1, 1], [7, 1, 1, 1, 1, 1, 1, 1, 1], [6, 6, 3], [6, 6, 2, 1], [6, 6, 1, 1, 1], [6, 5, 4], [6, 5, 3, 1], [6, 5, 2, 2], [6, 5, 2, 1, 1], [6, 5, 1, 1, 1, 1], [6, 4, 4, 1], [6, 4, 3, 2], [6, 4, 3, 1, 1], [6, 4, 2, 2, 1], [6, 4, 2, 1, 1, 1], [6, 4, 1, 1, 1, 1, 1], [6, 3, 3, 3], [6, 3, 3, 2, 1], [6, 3, 3, 1, 1, 1], [6, 3, 2, 2, 2], [6, 3, 2, 2, 1, 1], [6, 3, 2, 1, 1, 1, 1], [6, 3, 1, 1, 1, 1, 1, 1], [6, 2, 2, 2, 2, 1], [6, 2, 2, 2, 1, 1, 1], [6, 2, 2, 1, 1, 1, 1, 1], [6, 2, 1, 1, 1, 1, 1, 1, 1], [6, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 5, 5], [5, 5, 4, 1], [5, 5, 3, 2], [5, 5, 3, 1, 1], [5, 5, 2, 2, 1], [5, 5, 2, 1, 1, 1], [5, 5, 1, 1, 1, 1, 1], [5, 4, 4, 2], [5, 4, 4, 1, 1], [5, 4, 3, 3], [5, 4, 3, 2, 1], [5, 4, 3, 1, 1, 1], [5, 4, 2, 2, 2], [5, 4, 2, 2, 1, 1], [5, 4, 2, 1, 1, 1, 1], [5, 4, 1, 1, 1, 1, 1, 1], [5, 3, 3, 3, 1], [5, 3, 3, 2, 2], [5, 3, 3, 2, 1, 1], [5, 3, 3, 1, 1, 1, 1], [5, 3, 2, 2, 2, 1], [5, 3, 2, 2, 1, 1, 1], [5, 3, 2, 1, 1, 1, 1, 1], [5, 3, 1, 1, 1, 1, 1, 1, 1], [5, 2, 2, 2, 2, 2], [5, 2, 2, 2, 2, 1, 1], [5, 2, 2, 2, 1, 1, 1, 1], [5, 2, 2, 1, 1, 1, 1, 1, 1], [5, 2, 1, 1, 1, 1, 1, 1, 1, 1], [5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 3], [4, 4, 4, 2, 1], [4, 4, 4, 1, 1, 1], [4, 4, 3, 3, 1], [4, 4, 3, 2, 2], [4, 4, 3, 2, 1, 1], [4, 4, 3, 1, 1, 1, 1], [4, 4, 2, 2, 2, 1], [4, 4, 2, 2, 1, 1, 1], [4, 4, 2, 1, 1, 1, 1, 1], [4, 4, 1, 1, 1, 1, 1, 1, 1], [4, 3, 3, 3, 2], [4, 3, 3, 3, 1, 1], [4, 3, 3, 2, 2, 1], [4, 3, 3, 2, 1, 1, 1], [4, 3, 3, 1, 1, 1, 1, 1], [4, 3, 2, 2, 2, 2], [4, 3, 2, 2, 2, 1, 1], [4, 3, 2, 2, 1, 1, 1, 1], [4, 3, 2, 1, 1, 1, 1, 1, 1], [4, 3, 1, 1, 1, 1, 1, 1, 1, 1], [4, 2, 2, 2, 2, 2, 1], [4, 2, 2, 2, 2, 1, 1, 1], [4, 2, 2, 2, 1, 1, 1, 1, 1], [4, 2, 2, 1, 1, 1, 1, 1, 1, 1], [4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 3, 3, 3, 3], [3, 3, 3, 3, 2, 1], [3, 3, 3, 3, 1, 1, 1], [3, 3, 3, 2, 2, 2], [3, 3, 3, 2, 2, 1, 1], [3, 3, 3, 2, 1, 1, 1, 1], [3, 3, 3, 1, 1, 1, 1, 1, 1], [3, 3, 2, 2, 2, 2, 1], [3, 3, 2, 2, 2, 1, 1, 1], [3, 3, 2, 2, 1, 1, 1, 1, 1], [3, 3, 2, 1, 1, 1, 1, 1, 1, 1], [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 2, 2, 2, 2, 2, 2], [3, 2, 2, 2, 2, 2, 1, 1], [3, 2, 2, 2, 2, 1, 1, 1, 1], [3, 2, 2, 2, 1, 1, 1, 1, 1, 1], [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1], [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 2, 2, 2, 2, 1], [2, 2, 2, 2, 2, 2, 1, 1, 1], [2, 2, 2, 2, 2, 1, 1, 1, 1, 1], [2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1], [2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] }}} {{{id=16| P = Partitions(429) /// }}} {{{id=17| P.cardinality() /// 39020148000237259665 }}} {{{id=18| P.first() /// [429] }}} {{{id=19| for p in P: print p /// WARNING: Output truncated! full_output.txt [429] [428, 1] [427, 2] [427, 1, 1] [426, 3] [426, 2, 1] [426, 1, 1, 1] [425, 4] [425, 3, 1] [425, 2, 2] [425, 2, 1, 1] [425, 1, 1, 1, 1] [424, 5] [424, 4, 1] [424, 3, 2] [424, 3, 1, 1] [424, 2, 2, 1] [424, 2, 1, 1, 1] [424, 1, 1, 1, 1, 1] [423, 6] [423, 5, 1] [423, 4, 2] [423, 4, 1, 1] [423, 3, 3] [423, 3, 2, 1] [423, 3, 1, 1, 1] [423, 2, 2, 2] [423, 2, 2, 1, 1] [423, 2, 1, 1, 1, 1] [423, 1, 1, 1, 1, 1, 1] [422, 7] [422, 6, 1] [422, 5, 2] [422, 5, 1, 1] [422, 4, 3] [422, 4, 2, 1] [422, 4, 1, 1, 1] [422, 3, 3, 1] [422, 3, 2, 2] [422, 3, 2, 1, 1] [422, 3, 1, 1, 1, 1] [422, 2, 2, 2, 1] [422, 2, 2, 1, 1, 1] [422, 2, 1, 1, 1, 1, 1] [422, 1, 1, 1, 1, 1, 1, 1] [421, 8] [421, 7, 1] [421, 6, 2] [421, 6, 1, 1] [421, 5, 3] [421, 5, 2, 1] [421, 5, 1, 1, 1] [421, 4, 4] [421, 4, 3, 1] [421, 4, 2, 2] [421, 4, 2, 1, 1] [421, 4, 1, 1, 1, 1] [421, 3, 3, 2] [421, 3, 3, 1, 1] ... [395, 14, 5, 5, 4, 2, 2, 2] [395, 14, 5, 5, 4, 2, 2, 1, 1] [395, 14, 5, 5, 4, 2, 1, 1, 1, 1] [395, 14, 5, 5, 4, 1, 1, 1, 1, 1, 1] [395, 14, 5, 5, 3, 3, 3, 1] [395, 14, 5, 5, 3, 3, 2, 2] [395, 14, 5, 5, 3, 3, 2, 1, 1] [395, 14, 5, 5, 3, 3, 1, 1, 1, 1] [395, 14, 5, 5, 3, 2, 2, 2, 1] [395, 14, 5, 5, 3, 2, 2, 1, 1, 1] [395, 14, 5, 5, 3, 2, 1, 1, 1, 1, 1] [395, 14, 5, 5, 3, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 5, 2, 2, 2, 2, 2] [395, 14, 5, 5, 2, 2, 2, 2, 1, 1] [395, 14, 5, 5, 2, 2, 2, 1, 1, 1, 1] [395, 14, 5, 5, 2, 2, 1, 1, 1, 1, 1, 1] [395, 14, 5, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 4, 4, 3] [395, 14, 5, 4, 4, 4, 2, 1] [395, 14, 5, 4, 4, 4, 1, 1, 1] [395, 14, 5, 4, 4, 3, 3, 1] [395, 14, 5, 4, 4, 3, 2, 2] [395, 14, 5, 4, 4, 3, 2, 1, 1] [395, 14, 5, 4, 4, 3, 1, 1, 1, 1] [395, 14, 5, 4, 4, 2, 2, 2, 1] [395, 14, 5, 4, 4, 2, 2, 1, 1, 1] [395, 14, 5, 4, 4, 2, 1, 1, 1, 1, 1] [395, 14, 5, 4, 4, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 3, 3, 3, 2] [395, 14, 5, 4, 3, 3, 3, 1, 1] [395, 14, 5, 4, 3, 3, 2, 2, 1] [395, 14, 5, 4, 3, 3, 2, 1, 1, 1] [395, 14, 5, 4, 3, 3, 1, 1, 1, 1, 1] [395, 14, 5, 4, 3, 2, 2, 2, 2] [395, 14, 5, 4, 3, 2, 2, 2, 1, 1] [395, 14, 5, 4, 3, 2, 2, 1, 1, 1, 1] [395, 14, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 2, 2, 2, 2, 2, 1] [395, 14, 5, 4, 2, 2, 2, 2, 1, 1, 1] [395, 14, 5, 4, 2, 2, 2, 1, 1, 1, 1, 1] [395, 14, 5, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [395, 14, 5, 3, 3, 3, 3, 3] [395, 14, 5, 3, 3, 3, 3, 2, 1] ^C Traceback (most recent call last): File "", line 1, in File "_sage_input_62.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("Zm9yIHAgaW4gUDoKICAgIHByaW50IHA="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/tmp/tmpMUqX_r/___code___.py", line 2, in exec compile(u'for p in P:\n print p' + '\n', '', 'single') File "", line 2, in KeyboardInterrupt __SAGE__ }}} {{{id=20| p /// [395, 14, 5, 3, 3, 3, 3, 2, 1] }}} {{{id=21| p = Partition([5,3,1,1]) /// }}} {{{id=22| p /// [5, 3, 1, 1] }}} {{{id=23| print p.ferrers_diagram() /// ***** *** * * }}} {{{id=24| S = p.standard_tableaux() /// }}} {{{id=25| S /// Standard tableaux of shape [5, 3, 1, 1] }}} {{{id=26| t = S.first() /// }}} {{{id=27| t.pp() /// 1 5 7 9 10 2 6 8 3 4 }}} {{{id=28| latex(t) /// {\def\lr#1{\multicolumn{1}{|@{\hspace{.6ex}}c@{\hspace{.6ex}}|}{\raisebox{-.3ex}{$#1$}}} \raisebox{-.6ex}{$\begin{array}[b]{ccccc} \cline{1-1}\cline{2-2}\cline{3-3}\cline{4-4}\cline{5-5} \lr{1}&\lr{5}&\lr{7}&\lr{9}&\lr{10}\\ \cline{1-1}\cline{2-2}\cline{3-3}\cline{4-4}\cline{5-5} \lr{2}&\lr{6}&\lr{8}\\ \cline{1-1}\cline{2-2}\cline{3-3} \lr{3}\\ \cline{1-1} \lr{4}\\ \cline{1-1} \end{array}$} } }}} {{{id=29| view(t, pdflatex=True, viewer='pdf') /// }}} {{{id=30| /// }}} {{{id=31| f(x) = x^2 + sin(4*x) /// }}} {{{id=32| f(x) /// x^2 + sin(4*x) }}} {{{id=33| show(f(x)) /// }}} {{{id=34| f(-3) /// -sin(12) + 9 }}} {{{id=35| plot(f(x), -2, 2) /// }}} {{{id=36| type(f(x)) /// }}} {{{id=37| f(t) /// Traceback (most recent call last): File "", line 1, in File "_sage_input_92.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("Zih0KQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/tmp/tmpnAvEmf/___code___.py", line 2, in exec compile(u'f(t)' + '\n', '', 'single') File "", line 1, in File "expression.pyx", line 3946, in sage.symbolic.expression.Expression.__call__ (sage/symbolic/expression.cpp:19109) File "/home/saliola/Applications/sage-5.6/local/lib/python2.7/site-packages/sage/symbolic/callable.py", line 477, in _call_element_ return SR(_the_element.substitute(**d)) File "expression.pyx", line 3795, in sage.symbolic.expression.Expression.substitute (sage/symbolic/expression.cpp:18366) File "expression.pyx", line 2300, in sage.symbolic.expression.Expression.coerce_in (sage/symbolic/expression.cpp:13237) File "parent_old.pyx", line 235, in sage.structure.parent_old.Parent._coerce_ (sage/structure/parent_old.c:3628) File "parent.pyx", line 1000, in sage.structure.parent.Parent.coerce (sage/structure/parent.c:8302) TypeError: no canonical coercion from Standard tableaux of shape [5, 3, 1, 1] to Callable function ring with arguments (x,) }}} {{{id=38| t /// [[1, 5, 7, 9, 10], [2, 6, 8], [3], [4]] }}} {{{id=39| var('t') /// t }}} {{{id=40| plot(f(t), -2, 2) /// }}} {{{id=41| plot(f, -2, 2) /// }}} {{{id=42| type(f) /// }}} {{{id=43| f.taylor() /// Traceback (most recent call last): File "", line 1, in File "_sage_input_100.py", line 10, in exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("Zi50YXlsb3IoKQ=="),globals())+"\\n"); execfile(os.path.abspath("___code___.py"))' + '\n', '', 'single') File "", line 1, in File "/tmp/tmp7Vz3VY/___code___.py", line 2, in exec compile(u'f.taylor()' + '\n', '', 'single') File "", line 1, in File "expression.pyx", line 3269, in sage.symbolic.expression.Expression.taylor (sage/symbolic/expression.cpp:16597) NotImplementedError: Wrong arguments passed to taylor. See taylor? for more details. }}} {{{id=44| f.taylor(x, 0, 2) /// x |--> x^2 + 4*x }}} {{{id=45| show(f.taylor(x, 0, 2)) /// }}} {{{id=46| plot(f.taylor(x, 0, 2), -2, 2) /// }}} {{{id=47| P1 = plot(f, -2, 2) P2 = plot(f.taylor(x, 0, 5), -2, 2, color='red', ymin=-5, ymax=5) /// }}} {{{id=48| P1 + P2 /// }}} {{{id=49| P2 + P1 /// }}} {{{id=50| @interact def taylor_play(f=x^2+sin(4*x), order=slider(0, 20, 1, 2)): P1 = plot(f, -5, 5) P2 = plot(f.taylor(x, 0, order), -5, 5, color='red', ymin=-5, ymax=5) show(P1 + P2) ///
order 
}}} {{{id=51| taylor_play(5) /// }}} {{{id=52| @interact def taylor_play(f=x^2+sin(4*x),order=slider(0,20,1,2),x0=slider(-2,2,.25,0)): p1 = plot(f, -2, 2, ymin=-5,ymax=5) p2 = plot(f.taylor(x, x0, order),-2,2,color='red',ymin=-5,ymax=5) show(p1 + p2) ///
order 
x0 
}}} {{{id=53| /// }}}