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Definitions

Definition
A discrete dynamical system is a set S with a self-map

φ : S → S.

φn(x) = φ ◦ φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

(x) and φ0(x) = x .

The orbit of x is the set of iterates:

Oφ(x) =
{

x , φ(x), φ2(x), . . .
}
.



Motivation Finite Fields I: Local-to-global Finite fields II: Periodic points

Definitions

Definition
A point x ∈ S is

periodic if φn(x) = x for some n > 0,

preperiodic if φn(x) = φm(x) for some n > m ≥ 0
(equivalently, Oφ(x) is finite), and

wandering if Oφ(x) is infinite.

Per(φ,S) = {x ∈ S : x is periodic}.
PrePer(φ,S) = {x ∈ S : x is preperiodic}.
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A suggestive diagram

Lattès Maps

Key parallels

Arithmetic Geometry Dynamical Systems
rational points on varieties ←→ rational points in orbits

torsion points ←→ preperiodic points
finitely generated groups ←→ orbits of wandering points
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Dynamical Versions of Classical Results

Theorem (Mordell-Weil)
If A is an abelian variety defined over a number field K , then the
group of K -rational points is a finitely generated abelian group.
In particular,

A(K )tors is finite.

Theorem (Northcott)

If φ : Pn → Pn is a morphism defined over a number field K ,
then PrePer

(
φ,Pn

K

)
is a set of bounded height. In particular,

PrePer (φ,Pn(K )) is finite.
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Dynamical Versions of Classical Results

Conjecture

For each pair (d ,g) of positive integers, there exists a positive
integer B(d ,g) such that if [K : Q] = d and A is any
g-dimensional abelian variety defined over K , then

#A(K )tors ≤ B(d ,g).

Conjecture
For each triple of positive integers m ≥ 2, d ≥ 1, and n ≥ 1,
there exists a positive integer C = C(m,d ,n) such that if
[K : Q] = d and φ : Pn → Pn is a morphism of degree m defined
over K , then

#PrePer(φ,Pn(K )) ≤ C(m,d ,n).
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Dynamical Versions of Classical Results

Theorem (Raynaud)

Let A/C be an abelian variety and let X ⊂ A be an algebraic
subvariety. Then the Zariski closure of Ators ∩ X in A is a union
of a finite number of translates of abelian subvarieties of A by
torsion points of A.

Conjecture (Dynamical Manin-Mumford Conjecture)

Let φ : Pn
C → Pn

C be a morphism of degree at least 2 and let
X ⊂ Pn be an algebraic subvariety. Then the Zariski closure of

PrePer(φ,Pn
C) ∩ X

in Pn is a union of a finite number of φ-preperiodic subvarieties
of Pn.
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Dynamical Versions of Classical Results

Theorem (Faltings)

Let A/C be an abelian variety, let Γ ⊂ A(C) be a finitely
generated subgroup, and let X ⊂ A be an algebraic subvariety
that contains no nontrivial abelian subvarieties of A. Then

X ∩ Γ is a finite set.

Conjecture (Dynamical Mordell-Lang Conjecture)

Let φ : Pn
C → Pn

C be a morphism of degree at least 2, let
P ∈ Pn(C) be a wandering point for φ, and let X ⊂ Pn be an
irreducible algebraic subvariety that contains no φ-periodic
subvarieties of dimension at least one. Then

X ∩ Oφ(P) is a finite set.
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Good reduction

A rational map φ(z) ∈ Q(z) is in normalized form if

φ(z) =
F (z)

G(z)
=

adzd + ad−1zd−1 + · · ·+ a0

bdzd + bd−1zd−1 + · · ·+ b0
,

with F ,G ∈ Z[z] having no common factor and
having coefficients that satisfy

gcd(a0, . . . ,ad ,b0, . . . ,bd ) = 1.

Reduce modulo a prime p to get

φ̃(z) =
F̃ (z)

G̃(z)
=

ãdzd + ãd−1zd−1 + · · ·+ ã0

b̃dzd + b̃d−1zd−1 + · · ·+ b̃0
∈ Fp[z].
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Good reduction

Definition

φ has good reduction at p if deg(φ) = deg(φ̃)
(equivalently if F̃ and G̃ have no common factors in Fp[z]).

Res(F ,G) = 0 precisely when F and G have a common factor.

Definition
φ has good reduction at p if and only if p - Res(F ,G).
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Periodic points mod p

Theorem (Morton-Silverman)

Let φ(z) ∈ Q(z) be a rational function of degree d ≥ 2 and let p
be a prime of good reduction for φ. Let α ∈ P1(Q) be a periodic
point for φ and set

n = the exact period of α for the map φ.

m = the exact period of α̃ for the map φ̃.

r = the smallest integer such that
((

φ̃m
)′

(α̃)

)r

= 1.

Then
n = m or n = mr or n = mrp.

(If p ≥ 5 then only the first two are possible.)
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Periodic points mod p

Sketch of Proof.
If m 6= n: Write n = mγ + ρ with 0 ≤ ρ < m.
WLOG take α = 0. We have φ̃n(0) = 0, but also φ̃m(0) = 0.
So φρ(0) = 0, and m minimal⇒ r = 0. Hence m | n.

Replace φ by φm, m by 1, n by n/m. Write λ = φ̃′(0).
Iterate the Taylor expansion for φ around z = 0 and see that

1 + λ+ λ2 + · · ·+ λn−1 ≡ 0 (mod p). (∗)

If λ 6≡ 1 (mod p), then λn ≡ 1 (mod p) so r | n.

If n 6= r : Replace φ by φr and n by n/r .
This replaces λ with λr ≡ 1 (mod p), so by (∗) p | n.
Repeat argument to get n = mrpe.
Take one more term in Taylor expansion to get e = 1.
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An application

Corollary

Let φ(z) ∈ Q(z) be a rational function of degree d ≥ 2 and let p
be the smallest prime for which φ(z) has good reduction.
Suppose that α ∈ P1(Q) is a periodic point for φ of exact
period n. Then

n ≤ p3 − p.

(If p ≥ 5, then n ≤ p2 − 1.)

Proof.

n ≤ mrp ≤ (p + 1)(p − 1)p = p3 − p.
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An application

Corollary

Let φ(z) ∈ Q[z] have good reduction at 2. Then all rational
periodic points in P1(Q) have period 1, 2, or 4.

Proof.
n = m or n = mr or n = 2mr .

#F∗2 = 1, so r can only be 1.

#P1(F2) = 3, so possible values of m are 1, 2, and 3.

But∞ is fixed, so m can just be 1 or 2.



Motivation Finite Fields I: Local-to-global Finite fields II: Periodic points

Open questions

Idea: look at φ̃p for varying primes p of good reduction, and see
what we can conclude about φ itself.

Vague question: If Per
(
φ̃p,P1(Fp)

)
is “large,” does that imply

that Per(φ,P1(Q)) is non-empty?

Specific question: If φ̃p has a point of exact period n for all but
finitely many primes p (all primes of good reduction?), does that
imply that φ has a rational point of exact period n? Does it imply
anything?
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Polynomial maps on Fq

Do we expect a lot of periodic points?

x3 + 2 over F17
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Polynomial maps on Fq

Or do we expect a lot of strictly preperiodic points?

x3 + 2 over F43
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Heuristic answer

Suppose φ : Fq → Fq is m-to-1 over most points.

Iterating α→ φ(α)→ φ2(α)→ . . . is like picking with
replacement from a set of q elements.

Expect match after picking
√

q elements. (Birthday problem.)
That is, we expect orbits have length about

√
q.

Each point in the orbit is equally likely to be the match.
So we don’t expect to come back to the initial point.
That is, we expect to find strictly preperiodic points.

Since φ is m-to-1, we find branching in backwards orbits.
So we expect lots of strictly preperiodic points.
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One result

Theorem (Madhu)

Let φ(z) = zm + c, with m, c ∈ Z and m ≥ 2. Suppose that m, c
are such that 0 is not a preperiodic point of φ over Z. Let
Em := {primes p : p ≡ 1 (mod m)}. Then

lim
p→∞
p∈Em

Per(φ,Fp)

p
= 0.
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Proof sketch

Notice: α periodic for φ iff α ∈ Im(φn) for all n.

Step 1: Prime ideals of function field Fp(t)

Define polynomials φn(t) = φn(z)− t ∈ Fp(t)[z] and
a principal prime ideal pα := (t − α)

φn has a root modulo pα for every n iff α is periodic.

Kn = splitting field of φn over Fp(t),
Gn = Gal(Kn/Fp(t)), and
Frob(pα) = conjugacy class of Frobenius in Gn.

Factor φn mod pα =
s∏

i=1

gi(z) with deg(gi) = mi .

Each element of Frob(pα) = s disjoint cycles of length mi .
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Proof sketch

Step 1: Summary

α is periodic for φ iff the elements of Frob(pα) in Gn have a fixed
point for every n.
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Proof sketch

Step 2: Effective Chebotarev
gn = genus of the curve Xn given by φn
(equivalently genus of the field Kn).

Ci ⊂ GN conj classes whose elements have fixed points,

N = #Ci , and C =
N⋃

i=1

Ci .

ψ = {points in P1(Fp) that are unramified in Xn},
ψC = {β ∈ ψ : Frob(β) ⊂ C}, and
D = #

(
P1(Fp) r ψ

)
(number of ramified points).

Theorem ∣∣∣∣#ψC

#ψ
− #C

#Gn

∣∣∣∣ < 1
#ψ

(
2gn

#C
#Gn

√
p + ND

)
.
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Proof sketch

Theorem ∣∣∣∣#ψC

#ψ
− #C

#Gn

∣∣∣∣ < 1
#ψ

(
2gn

#C
#Gn

√
p + ND

)
.

Step 2: Effective Chebotarev
For p sufficiently large, N, D and gn depend only on φn.
So RHS goes to 0 as p goes to∞.
Proportion of periodic points for φ in Fp approximated by
proportion of elements in Gn that fix at least one root of φn.

Structure of Gn with result of Odoni =⇒ lim
n→∞

#C
#Gn

→ 0.
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Open questions

Other polynomials? The only critical point of zm + c is z = 0,
so all ramification is over 0.

Non-polynomials? These are “almost polynomial”:

φa(x) =
1 + ax + (3 + a)x2

1− (4 + a)x − (a + 1)x2 , a ∈ Qr {−2}.

Critical points are 1 and −1/3
φa has the two-cycle 0 7→ 1 7→ −1 7→ 1.

Towers of finite fields? For any map φ, investigate

lim
n→∞

Per(φ,P1(Fpn ))

pn + 1
.
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Remark

Let φ(z) = zp + c. In characteristic p, φn(z) = zpn
+ nc.

φn(z) is a permutation polynomial on Fpn , so all points are
periodic under φ.
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Data: φ(z) = z3 over F2n

For odd n, all points are periodic. For even n we have:

n proportion of periodic points
2 0.500000000000000
4 0.375000000000000
6 0.125000000000000
8 0.335937500000000

10 0.333984375000000
12 0.111328125000000
14 0.333374023437500
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Data: φ(z) = z2 over F3n

n proportion of periodic points
1 0.666666666666667
2 0.222222222222222
3 0.518518518518518
4 0.0740740740740741
5 0.502057613168724
6 0.126200274348422
7 0.500228623685414
8 0.0313976527968298
9 0.500025402631713

10 0.125014818201832
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Data: φ(z) = z2 + 1 over F3n

1 0.333333333333333
2 0.333333333333333
3 0.370370370370370
4 0.283950617283951
5 0.374485596707819
6 0.312757201646091
7 0.374942844078647
8 0.265660722450846
9 0.374993649342072

10 0.312503175328964
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Data: φ(z) = z2 + 2 over F3n

1 0.666666666666667
2 0.444444444444444
3 0.185185185185185
4 0.0493827160493827
5 0.296296296296296
6 0.0589849108367627
7 0.0841335162322817
8 0.0164609053497942
9 0.0313468475334045

10 0.0105674947924605
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More results

Flynn and Garton

Consider a finite field Fq and rational maps φ : P1(Fq)→ P1(Fq)
of degree m. When m ≥ √q:

The average number of connected components of the
graphs of all such φ is bounded below by

1
2

log q − 4.

The average number of periodic points bounded below by

5
6
√

q − 4.
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Sketch of proof

Count the number of rational functions of a fixed degree that
give an arbitrary cycle, then sum over possible cycles to obtain
the results. More precisely, we compute the following quantities:∑

φ∈Fq(z)
degφ=m

|{cycles in Γφ}| , and

∑
φ∈Fq(z)
degφ=m

|{k -cycles in Γφ}| .
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Open questions

Small degree? The techniques used don’t work for small
degree because you can get “long cycles” (length greater than
m + 2), and Flynn & Garton don’t count those.
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