Computing Siegel modular forms

Kristin Lauter
Microsoft Research

Women in SAGE project July 16, 2012

Loss of precision in floating point computation

Multiplication of real numbers approximated through truncation
Let α_{t} be a truncation of α such that $\alpha-\alpha_{t}<10^{-t}$.
Same for β_{t}.
What about $\alpha \beta-\alpha_{t} \beta_{t}$?
Example: $\beta=10, \alpha=0.859$
Compute with 2 digits of precision, $t=2$
Result: lose one digit of precision in the product.

Evaluating the j-function at a CM point

$q=\exp \left(2 * P i * I *\left(1+(-163)^{0.5}\right) / 2\right)$
$-3.808980937007652338226231515 E^{-18}+5.192218628 E^{-45} * I$
$1 / q+744+196884 * q$
$=$
$-262537412640768000.0000000001-0.0000000003578783058 *$ I
$\operatorname{round}(\operatorname{real}())=-262537412640768000=-2^{18} *(3 * 5 * 23 * 29)^{3}$

Product expansion

Using the Dedekind η-function $\eta(z)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$,

$$
j(z)=\left(\frac{(\eta(z / 2) / \eta(z))^{24}+16}{(\eta(z / 2) / \eta(z))^{8}}\right)^{3}
$$

The sparsity of the q-expansion of the η-function makes it very efficient for explicit computations.

The Siegel moduli space

The Siegel moduli space \mathcal{A}_{2} parameterizes abelian surfaces with principal polarization.

Let $\mathrm{Sp}_{2}(\mathbb{Z})$ be the symplectic group over \mathbb{Z} of genus two, consisting of 4×4-integral matrices M satisfying

$$
M J M^{t}=J, \quad J=\left(\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right)
$$

where I_{2} is the identity matrix of order 2 . Let

$$
\mathbb{H}_{2}=\left\{\tau=\left(\begin{array}{c}
\tau_{1} \tau_{2} \\
\tau_{2}
\end{array} \tau_{3}\right) \in M_{2}(\mathbb{C}): \Im \tau>0\right\}
$$

be the Siegel upper half-plane of genus two, and let

$$
X_{2}=\operatorname{Sp}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{2}
$$

be the open Siegel modular 3-fold.

The Siegel moduli space

Here $S p_{2}(\mathbb{Z})$ acts on \mathbb{H}_{2} via

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \tau=(A \tau+B)(C \tau+D)^{-1} .
$$

For a given CM field K we can give explicit representatives for all the CM points on $\mathcal{A}_{2}(\mathbb{C})$:

$$
\left\{\tau: \mathbb{C}^{2} /\left\langle\mathrm{I}_{2} \tau\right\rangle \text { has } \mathrm{CM} \text { by } \mathcal{O}_{K}\right\} / \mathrm{Sp}_{4}(\mathbb{Z})
$$

Siegel modular functions

A holomorphic function $f: \mathbb{H}_{2} \rightarrow \mathbf{C}$ is called a Siegel modular form of weight $w \geq 0$ if it satisfies

$$
f\left(\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \tau\right)=\operatorname{det}(C \tau+D)^{w} f(\tau)
$$

for all τ and all matrices in the subgroup $\mathrm{Sp}_{4}(\mathbf{Z}) \subset \mathrm{Sp}_{4}(\mathbf{R})$. The integer w is called the weight of the form f.

Theta functions

$$
\theta\left[\epsilon_{1} \epsilon_{2}\right](z, \tau)=\sum_{n \in \mathbf{Z}^{\varepsilon}} \exp \left(\pi i\left(n+\epsilon_{1} / 2\right) \tau^{t}\left(n+\epsilon_{1} / 2\right)+2 \pi i\left(n+\epsilon_{1} / 2\right)^{t}\left(z+\epsilon_{2} / 2\right)\right.
$$

Thetanullwerte when $z=0$
The even theta characteristics are those such that $\epsilon_{1} \cdot{ }^{t} \epsilon_{2} \equiv 0$ $(\bmod 2)$

Eisenstein series

For $w \geq 4$ even, Eisenstein series E_{w} defined by

$$
E_{w}(\tau)=\sum_{c, d}(c \tau+d)^{-w}
$$

The sum ranges over all co-prime symmetric 2×2-integer matrices c, d that are non-associated with respect to left-multiplication by GL(2, Z).

Fourier expansion

Any Siegel modular form f admits a Fourier expansion

$$
\begin{equation*}
f(\tau)=\sum_{T} a(T) \exp (2 \pi i \operatorname{Tr}(T \tau)) \tag{1.3}
\end{equation*}
$$

where T ranges over certain 2×2-matrices with coefficients in $\frac{1}{2} \mathbf{Z}$.
Truncate the sum in (1.3) to only include matrices with trace below some bound.

Eichler-Zagier

Theorem. Let $T=\left(\begin{array}{cc}a & b / 2 \\ b / 2 & c\end{array}\right) \in \operatorname{Mat}\left(\frac{1}{2} \mathbf{Z}\right)$ be a positive semi-definite matrix with integer entries on the diagonal. Write $D=b^{2}-4 a c \leq 0$ and let D_{0} be the discriminant of $\mathbb{Q}(\sqrt{D})$.
Then the Fourier coefficient $a(T)$ equals 1 for $a=b=c=0$ and

$$
\frac{-2 w}{B_{w}} \sum_{d \mid \operatorname{gcd}(a, b, c)} d^{w-1} c\left(D / d^{2}\right)
$$

otherwise. Here, B_{k} is the k th Bernoulli number and c is defined by $c(0)=1$ and

$$
c\left(D^{\prime}\right)=\frac{1}{\zeta(3-2 w)} L_{D_{0}}(2-w) \sum_{d \mid f} \mu(d)\left(\frac{D_{0}}{d}\right) d^{w-2} \sigma_{2 w-3}(f / d)
$$

where $D_{0} f^{2}=D^{\prime}, \zeta$ denotes the Dedekind ζ-function, $L_{D_{0}}$ is the quadratic Dirichlet L-series, μ is the Mobius function, $\sigma_{n}(x)$ is the sum of the nth powers of the divisors of x.

CM points on the moduli space

$K=$ quartic primitive CM field.
A curve C over \mathbb{C} has $C M$ by \mathcal{O}_{K} if \mathcal{O}_{K} embeds in the endomorphism ring of $\operatorname{Jac}(C)$.

CM points on the moduli space of principally polarized abelian surfaces correspond to isomorphism classes of CM curves.

Absolute Igusa invariants

Igusa gave 3 Siegel modular functions h_{1}, h_{2}, h_{3}, the absolute Igusa invariants.

$$
\begin{gathered}
h_{1}=2 \cdot 3^{5} \frac{\chi_{12}^{5}}{\chi_{10}^{6}} \\
h_{2}=\frac{3^{3}}{2^{3}} \frac{E_{4} \chi_{12}^{3}}{\chi_{10}^{4}} \\
h_{3}=\frac{3}{2^{5}}\left(\frac{E_{6} \chi_{12}^{2}}{\chi_{10}^{3}}+2^{2} \cdot 3 \frac{E_{4} \chi_{12}^{3}}{\chi_{10}^{4}}\right) .
\end{gathered}
$$

$$
\chi_{10}=-43867 \cdot 2^{-12} \cdot 3^{-5} \cdot 5^{-2} \cdot 7^{-1} \cdot 53^{-1}\left(E_{4} E_{6}-E_{10}\right)
$$

$\chi_{12}=131 \cdot 593 \cdot 2^{-13} \cdot 3^{-7} \cdot 5^{-3} \cdot 7^{-2} \cdot 337^{-1}\left(3^{2} \cdot 7^{2} E_{4}^{3}+2 \cdot 5^{3} E_{4}^{6}-691 E_{12}\right)$,

Igusa class polynomials

Definition

The Igusa class polynomials

$$
H_{i}(x)=\prod_{\frac{\left\{\tau: \mathbb{C}^{2} /\left\langle\mathrm{I}_{2} \tau\right\rangle \text { has } \mathrm{CM} \text { by } \mathcal{O}_{K}\right\}}{\mathrm{SP}_{4}(\mathbb{Z})}}\left(x-h_{i}(\tau)\right), \quad i=1,2,3
$$

Constructing genus 2 curves for cryptography

C smooth, projective, irreducible genus 2 curve over \mathbb{F}_{p}.
$J(C)$ the Jacobian variety.
$J(C)\left(\mathbb{F}_{p}\right)$ can be used in cryptography as the group with a hard Discrete Log Problem (DLP) if the group has a subgroup of large prime order (roughly size p^{2})

Advantage: p of size 2^{128} instead of 2^{256} as for elliptic curves.
Applications: key exchange, digital signatures, encryption, ...

Challenge:

Generate C / \mathbb{F}_{q} with $\# J(C)\left(\mathbb{F}_{q}\right)=N, N$ a large prime.
Strategy: Construct curves with a known order using complex multiplication (CM) techniques.

1. Given $N_{1}=\# C\left(\mathbb{F}_{q}\right)$ and $N_{2}=\# C\left(\mathbb{F}_{q^{2}}\right) \mathbb{F}_{p}$, this determines a quartic CM number field K by the characteristic polynomial of Frobenius.
2. Compute "modular invariants" associated to the field K .
3. Reconstruct the curve from its invariants via Mestre's algorithm.

Computing the CM field K

For an ordinary genus 2 curve C over a prime field \mathbb{F}_{q}, let $N_{1}=\# C\left(\mathbb{F}_{q}\right)$ and $N_{2}=\# C\left(\mathbb{F}_{q^{2}}\right)$. Then

$$
\begin{equation*}
\# J(C)\left(\mathbb{F}_{q}\right)=\left(N_{1}^{2}+N_{2}\right) / 2-q . \tag{1}
\end{equation*}
$$

Set

$$
s_{1}:=q+1-N_{1}
$$

and

$$
s_{2}:=\frac{1}{2}\left(s_{1}^{2}+N_{2}-1-q^{2}\right) .
$$

Then the quartic polynomial satisfied by the Frobenius endomorphism of the Jacobian is $f(t)=t^{4}-s_{1} t^{3}+s_{2} t^{2}-q s_{1} t+q^{2}$.

Thus the Jacobian of the curve has endomorphism ring equal to an order in the quartic CM field $K=\mathbb{Q}[t] /(f(t))$.

