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The Fourier Transform

Given f : R — C continuous, absolutely integrable, the Fourier
transform is

>
S .
7(s) :/ f(x)e ™™ dx for seR.
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The Fourier Transform

Given f : R — C continuous, absolutely integrable, the Fourier
transform is

>
S .
7(s) :/ f(x)e ™™ dx for seR.

—00

» Can recover f from the Fourier Inversion Formula

f(x) = / h e?™SF(s) ds.

—00
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Locally Compact Abelian Groups

More generally, allow complex valued functions on group G

» Restrict to locally compact, Hausdorff topological groups
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Locally Compact Abelian Groups

More generally, allow complex valued functions on group G
» Restrict to locally compact, Hausdorff topological groups
» Abelian groups for now
Some standard examples:
» Finite additive groups with the discrete topology, e.g. Z/n’Z
» Tori, (R/Z)9 with the standard topology
» Euclidean space R? with standard topology

» Finitely generated additive groups with the discrete topology,
eg. 79
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Locally Compact Abelian Groups

More generally, allow complex valued functions on group G
» Restrict to locally compact, Hausdorff topological groups
» Abelian groups for now

Some standard examples:

v

Finite additive groups with the discrete topology, e.g. Z/nZ
Tori, (R/Z)9 with the standard topology
Euclidean space R? with standard topology

vV vY

Finitely generated additive groups with the discrete topology,
d

eg. 7

Adele ring with the usual restricted topology

v
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Haar Measure

Require:

» Haar measure is translation invariant:
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Haar Measure

Require:
» Haar measure is translation invariant:
>
u(U) = (U +g)
for all g € G, subsets U C G generated from compact subsets
by countable unions and complements.
» Haar measure of compact sets is finite

Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure
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Require:
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u(U) = (U +g)
for all g € G, subsets U C G generated from compact subsets
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Haar Measure

Require:
» Haar measure is translation invariant:
>
u(U) = (U +g)
for all g € G, subsets U C G generated from compact subsets
by countable unions and complements.
» Haar measure of compact sets is finite
Theorem (Weil) All locally compact abelian (LCA) groups have a
non-trivial Haar measure
» For the discrete examples, Haar measure is the counting
measure

» For other (non-adele) examples can construct Haar measure
from Lebesgue measure
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Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

William Hart The Discrete Fourier Transform



Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

» The Fourier Transform for an absolutely integrable function f
is:

f(s) = /G f(x)e 25X dp(x).

William Hart The Discrete Fourier Transform



Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

» The Fourier Transform for an absolutely integrable function f
is:

f(s) = /G f(x)e 25X dp(x).

» f: G — C where G is the Pontryagin dual of G
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Fourier Transform on an LCA

Haar measure on an LCA unique up to multiplication by scalar.

» The Fourier Transform for an absolutely integrable function f
is:

f(s) = /G f(x)e 25X dp(x).

» f: G — C where G is the Pontryagin dual of G

» G is space of additive characters of G (continuous additive
homomorphisms) s : G — R/Z
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Discrete Fourier Transform

We are interested in G a finite abelian group with discrete
topology

» The Discrete Fourier Transform

=) L(&)f(g)-

geiG
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Discrete Fourier Transform

We are interested in G a finite abelian group with discrete
topology

» The Discrete Fourier Transform

=) L(&)f(g)-

geiG

» E.g. G =7/nZ, functions f on G are polynomials in
C[x]/(x" — 1).
> let (j(g) =exp <2””g> forg € Z/nZ
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Discrete Fourier Transform

We are interested in G a finite abelian group with discrete
topology

» The Discrete Fourier Transform

=) L(&)f(g)-

geiG

» E.g. G =7/nZ, functions f on G are polynomials in
C[x]/(x" — 1).
> let (j(g) =exp <2””g> forg € Z/nZ

» DFT of f =ag+aix+ -+ ap_1x" 1 at Gis

n—1
F=F(g) = ae2mim/m,
m=0
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Generalisation

» For finite abelian group G of exponent n (nG = 0) can replace
C with commutative ring K containing primitive n-th root of
unity ¢ (with some additional conditions).
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unity ¢ (with some additional conditions).
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ag) = dec a(g) < g, & > for choice of non-degenerate
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Generalisation

» For finite abelian group G of exponent n (nG = 0) can replace
C with commutative ring K containing primitive n-th root of
unity ¢ (with some additional conditions).

» DFT is homomorphism K[G] — K defined by
ag) = dec a(g) < g, & > for choice of non-degenerate

form < g, 8 >: G x G —< ( >.

» Fourier inversion theorem (conditions)

(#G)'a(—g) = a(g) for ae€ K[G].
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» (Number Theoretic Transform)
K = Z/pZ for prime p, ¢ primitive n-th root of unity in K
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22 is a primitive 2X*1-th root of unity in R.

» S =7[x]/(x*" +1)

William Hart The Discrete Fourier Transform



» (Number Theoretic Transform)
K = Z/pZ for prime p, ¢ primitive n-th root of unity in K
» (Fermat Ring)
R = Z/pZ for p = 22 41 (not necessarily prime), a, K € N.
22 is a primitive 2X*1-th root of unity in R.
» S =7[x]/(x*" +1)
» (non-example) Mersenne Ring
R:Z/piorp:22K—1
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Convolution

» G an LCA with non-trivial Haar measure p
convolution of two absolutely integrable functions
f,g: G — C is defined by

Fxg(x) = /G F()g(x — y)du(y).
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Convolution

» G an LCA with non-trivial Haar measure p
convolution of two absolutely integrable functions
f,g: G — C is defined by

Fxg(x) = /G F()g(x — y)du(y).

Fxg(s) = F(s)&(s).

“Fourier Transform converts convolution into “pointwise”
multiplication”

» Retrieve convolution of f, g using inverse Fourier transform
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> G =17/nZ, for f =ag+ aix+ -+ a,1x""! and
g=bo+bix+---+ bn—l)(n_1 S (C[X]/(X” — 1), have

n—1
(fxg)j = Z ambj_m (mod n)-

m=0
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> G =17/nZ, for f =ag+ aix+ -+ a,1x""! and
g=bo+bix+---+ bn—l)(n_1 S (C[X]/(X” — 1), have

n—1
(f*g)j = Z ambjfm (mod n)-

m=0

» Here convolution is multiplication of polynomials modulo
n
x"—1.
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Fast Fourier Transforms

» DFT can be computed naively in O(n?) steps
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Fast Fourier Transforms

» DFT can be computed naively in O(n?) steps
» Convolution can be computed naively in O(n?) steps

» Suppose G has a increasing subgroup series

0=GyCGiC...CGxk=G
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Fast Fourier Transforms

DFT can be computed naively in O(n?) steps

v

v

Convolution can be computed naively in O(n?) steps

v

Suppose G has a increasing subgroup series

0=GyCGiC...CGxk=G

Recall that

v

FO) =D e)f(e)-

geG

v

Write every g € G as sum of element in Gk_1 and element
from fixed set of representatives for Gy /Gk_1.
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Fast Fourier Transforms

DFT can be computed naively in O(n?) steps

v

v

Convolution can be computed naively in O(n?) steps

v

Suppose G has a increasing subgroup series

0=GyCGiC...CGxk=G

» Recall that
FO) =D ce)f(e)
geG
» Write every g € G as sum of element in Gx_1 and element

from fixed set of representatives for Gy /Gk_1.
For Z/2"Z get Cooley-Tukey FFT, complexity O(nlog n)

v
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Rader/Winograd FFT

» G of prime order, work with the multiplicative group of
invertible elements modulo p, order p — 1.
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Rader/Winograd FFT

» G of prime order, work with the multiplicative group of
invertible elements modulo p, order p — 1.

» g primitive root mod p, compute

-1 -2
~ P A~ R _ZLigf(jfm)
0= a, and f,j=ao+ E agme P .
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Rader/Winograd FFT

» G of prime order, work with the multiplicative group of
invertible elements modulo p, order p — 1.

» g primitive root mod p, compute

-1 -2
~ P A~ R _ZLigf(jfm)
0= a, and f,j=ao+ E agme P .

» Sum is cyclic convolution of two length p — 1 vectors

» Compute using zero padded FFTs or recurse on Rader’'s FFT
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Rader/Winograd FFT

G of prime order, work with the multiplicative group of
invertible elements modulo p, order p — 1.

v

» g primitive root mod p, compute

-1 -2
~ P A~ R _ZLigf(jfm)
0= a, and f,j=ao+ E agme P .

» Sum is cyclic convolution of two length p — 1 vectors
» Compute using zero padded FFTs or recurse on Rader’'s FFT
» Winograd generalised to prime powers
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Rader/Winograd FFT

G of prime order, work with the multiplicative group of
invertible elements modulo p, order p — 1.

v

» g primitive root mod p, compute

-1 -2
~ P A~ R _ZLigf(jfm)
0= a, and f,j=ao+ E agme P .

Sum is cyclic convolution of two length p — 1 vectors
Compute using zero padded FFTs or recurse on Rader’'s FFT

Winograd generalised to prime powers

vV v.v Yy

Cost somewhere between O(n?) and O(nlog n) for recursive
Rader FFT
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Non-abelian DFTs

Can do DFTs for non-abelian finite groups G

» Replace characters with group representations p : G —GL,(C)
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Can do DFTs for non-abelian finite groups G
» Replace characters with group representations p : G —GL,(C)
» Two reps. equivalent if same up to change of basis
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Non-abelian DFTs

Can do DFTs for non-abelian finite groups G
Replace characters with group representations p : G —GL,(C)

v

Two reps. equivalent if same up to change of basis
Complex reps. irreducible if not the direct sum of smaller reps

As many inequiv. irred. reps. as conjugacy classes in G

vV V. Vv Y

If f is a C-valued fn. on a finite group G then a Fourier
transform of f is a set of matrix sums

Flo)=>_ fg)nle),

geG

one for each p in a complete set R of inequiv. irred. reps.
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Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra
C[G].
» Fourier transform is an isomorphism
B = &},_1Bm : C[G] — &), COm=Pm
to algebra of block diagonal matrices, with r the number of
classes of inequiv. irred. reps. of C[G]
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One can also use Wedderburn's Theorem for the group algebra
C[G].

» Fourier transform is an isomorphism
B = &},_1Bm : C[G] — &), COm=Pm
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where Tr(M) is trace of M
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One can also use Wedderburn's Theorem for the group algebra
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» Fourier transform is an isomorphism
B = &},_1Bm : C[G] — &), COm=Pm

to algebra of block diagonal matrices, with r the number of
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» Fourier inversion formula, for R is
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where Tr(M) is trace of M
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Wedderburn's isomorphism

One can also use Wedderburn's Theorem for the group algebra
C[G].
» Fourier transform is an isomorphism
B = @}y—1Bm : C[G] — @, Com*bm
to algebra of block diagonal matrices, with r the number of

classes of inequiv. irred. reps. of C[G]
» Fourier inversion formula for R is

flg) = 4= Zdlm (P)p(g™)),
pER
where Tr(M) is trace of M
» FFT for G requires subgroup series and notion of H-adapted
reps. for subgroup H of G, etc.
» Set R of reps. of G is H-adapted if when restricted to H they
can be constructed as direct products of fixed set of inequiv.
irred. reps. of H
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Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

William Hart The Discrete Fourier Transform



Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

» Middle product for use in division algorithms

William Hart The Discrete Fourier Transform



Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

» Middle product for use in division algorithms

» Number Theoretic Transform G = Z/pZ, p odd prime

William Hart The Discrete Fourier Transform



Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

» Middle product for use in division algorithms
» Number Theoretic Transform G = Z/pZ, p odd prime

» Multidimensional FFTs, G = (Z/2"Z)" for multivariate
polynomial arithmetic
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Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

v

Middle product for use in division algorithms

v

Number Theoretic Transform G = 7Z/pZ, p odd prime

Multidimensional FFTs, G = (Z/2"Z)" for multivariate
polynomial arithmetic

v

Gauss Sum

v
—

G(aip) = <J> (2712 /p

p

hel

[
[l
o

for p an odd prime, is a DFT
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Applications of DFT

» Fast Fourier Transform G = Z/2"Z, used in fast polynomial
and large integer multiplication

» Middle product for use in division algorithms
» Number Theoretic Transform G = Z/pZ, p odd prime

» Multidimensional FFTs, G = (Z/2"Z)" for multivariate
polynomial arithmetic

» Gauss Sum

[ay

G(aip) = <J> (2712 /p

p

hel

[
[l
o

for p an odd prime, is a DFT
» G(a;p) = (%) i(P_l)/zﬁ, so Legendre symbol is essentially
its own DFT
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» What other applications exist for DFT for abelian and
non-abelian groups?
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» What other applications exist for DFT for abelian and
non-abelian groups?

» What does Sage implement in the way of DFTs for abelian
LCAs?
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» What other applications exist for DFT for abelian and
non-abelian groups?

» What does Sage implement in the way of DFTs for abelian
LCAs?

» What does Sage implement in the way of DFTs for nonabelian
LCHTGs?
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