
Tables of elliptic curves

John Cremona

University of Warwick

22 June 2010

Overview of the lectures

1 Introduction; the elliptic curve database
2 Optimality and the Manin conjecture
3 Computing isogenies
4 Finding elliptic curves with good reduction outside a given

set of primes

Introduction: Why make tables of elliptic curves?

Since the early days of using computers in number theory,
computations and tables have played an important part in
experimentation, for the purpose of formulating, proving (and
disproving) conjectures. This is particularly true in the study of
elliptic curves.
Originally the tables were relatively hard to use (let alone to
make) as they were available in printed form, or on microfiche!
Example: the Antwerp IV tables. Now life is much easier!
Packages such as SAGE, MAGMA and PARI/GP contain the
elliptic curve databases (sometimes as optional add-ons as
they are large) and of course the internet makes accessing
even “printed” tables much easier.

Introduction: Why make tables of elliptic curves?

Since the early days of using computers in number theory,
computations and tables have played an important part in
experimentation, for the purpose of formulating, proving (and
disproving) conjectures. This is particularly true in the study of
elliptic curves.

Originally the tables were relatively hard to use (let alone to
make) as they were available in printed form, or on microfiche!
Example: the Antwerp IV tables. Now life is much easier!
Packages such as SAGE, MAGMA and PARI/GP contain the
elliptic curve databases (sometimes as optional add-ons as
they are large) and of course the internet makes accessing
even “printed” tables much easier.

Introduction: Why make tables of elliptic curves?

Since the early days of using computers in number theory,
computations and tables have played an important part in
experimentation, for the purpose of formulating, proving (and
disproving) conjectures. This is particularly true in the study of
elliptic curves.
Originally the tables were relatively hard to use (let alone to
make) as they were available in printed form, or on microfiche!
Example: the Antwerp IV tables.

Now life is much easier!
Packages such as SAGE, MAGMA and PARI/GP contain the
elliptic curve databases (sometimes as optional add-ons as
they are large) and of course the internet makes accessing
even “printed” tables much easier.

Introduction: Why make tables of elliptic curves?

Since the early days of using computers in number theory,
computations and tables have played an important part in
experimentation, for the purpose of formulating, proving (and
disproving) conjectures. This is particularly true in the study of
elliptic curves.
Originally the tables were relatively hard to use (let alone to
make) as they were available in printed form, or on microfiche!
Example: the Antwerp IV tables. Now life is much easier!
Packages such as SAGE, MAGMA and PARI/GP contain the
elliptic curve databases (sometimes as optional add-ons as
they are large) and of course the internet makes accessing
even “printed” tables much easier.

What is a table?

We will be exclusively concerned with elliptic curves defined
over number fields, with a special emphasis on curves defined
over Q. We are not interested (at least, not right now) on curves
defined over finite fields, or over function fields.

How do we order elliptic curves?

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

There are several possibilities:
By height: say by max{|a1|, |a2|, |a3|, |a4|, |a6|}, or
max{|c4|, |c6|}, or (better) max{|c4|1/3, |c6|1/2}
By discriminant ∆
By conductor N

What is a table?

We will be exclusively concerned with elliptic curves defined
over number fields, with a special emphasis on curves defined
over Q. We are not interested (at least, not right now) on curves
defined over finite fields, or over function fields.

How do we order elliptic curves?

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

There are several possibilities:

By height: say by max{|a1|, |a2|, |a3|, |a4|, |a6|}, or
max{|c4|, |c6|}, or (better) max{|c4|1/3, |c6|1/2}
By discriminant ∆
By conductor N

What is a table?

We will be exclusively concerned with elliptic curves defined
over number fields, with a special emphasis on curves defined
over Q. We are not interested (at least, not right now) on curves
defined over finite fields, or over function fields.

How do we order elliptic curves?

Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

There are several possibilities:
By height: say by max{|a1|, |a2|, |a3|, |a4|, |a6|}, or
max{|c4|, |c6|}, or (better) max{|c4|1/3, |c6|1/2}
By discriminant ∆
By conductor N

Databases past, present . . . and future

Brumer and McGuinness (1980s): prime |∆| < 108,
310711 curves. Produced surprising rank distributions.

Stein and Watkins (see ANTS-V 2002): N ≤ 1010 and ∆
prime, or N ≤ 108 and |∆| ≤ 1012 (approximately): 44
million curves.

These tables contain huge numbers of curves. Though they are
not complete (for example, Stein-Watkins does not contain
174a=[1,0,1,-7705,1226492]) they provide lots of useful data.
See William A. Stein and Mark Watkins, ”A database of elliptic
curves – first report”, ANTS V Proceedings (Sydney 2002)
Springer LNCS 2369 (Fieker and Kohel, eds.), pages 267 - 275.

Databases past, present . . . and future

Brumer and McGuinness (1980s): prime |∆| < 108,
310711 curves. Produced surprising rank distributions.
Stein and Watkins (see ANTS-V 2002): N ≤ 1010 and ∆
prime, or N ≤ 108 and |∆| ≤ 1012 (approximately): 44
million curves.

These tables contain huge numbers of curves. Though they are
not complete (for example, Stein-Watkins does not contain
174a=[1,0,1,-7705,1226492]) they provide lots of useful data.
See William A. Stein and Mark Watkins, ”A database of elliptic
curves – first report”, ANTS V Proceedings (Sydney 2002)
Springer LNCS 2369 (Fieker and Kohel, eds.), pages 267 - 275.

Databases past, present . . . and future

Brumer and McGuinness (1980s): prime |∆| < 108,
310711 curves. Produced surprising rank distributions.
Stein and Watkins (see ANTS-V 2002): N ≤ 1010 and ∆
prime, or N ≤ 108 and |∆| ≤ 1012 (approximately): 44
million curves.

These tables contain huge numbers of curves. Though they are
not complete (for example, Stein-Watkins does not contain
174a=[1,0,1,-7705,1226492]) they provide lots of useful data.

See William A. Stein and Mark Watkins, ”A database of elliptic
curves – first report”, ANTS V Proceedings (Sydney 2002)
Springer LNCS 2369 (Fieker and Kohel, eds.), pages 267 - 275.

Databases past, present . . . and future

Brumer and McGuinness (1980s): prime |∆| < 108,
310711 curves. Produced surprising rank distributions.
Stein and Watkins (see ANTS-V 2002): N ≤ 1010 and ∆
prime, or N ≤ 108 and |∆| ≤ 1012 (approximately): 44
million curves.

These tables contain huge numbers of curves. Though they are
not complete (for example, Stein-Watkins does not contain
174a=[1,0,1,-7705,1226492]) they provide lots of useful data.
See William A. Stein and Mark Watkins, ”A database of elliptic
curves – first report”, ANTS V Proceedings (Sydney 2002)
Springer LNCS 2369 (Fieker and Kohel, eds.), pages 267 - 275.

The Antwerp tables
“Antwerp IV” := Modular function of One Variable IV, edited by
Birch and Kuyk, Proceedings of an International Summer
School in Antwerp, July 17 - August 3, 1972. See http:
//modular.math.washington.edu/scans/antwerp/.

http://modular.math.washington.edu/scans/antwerp/
http://modular.math.washington.edu/scans/antwerp/

The tables in Antwerp IV

1 “All” elliptic curves of conductor N ≤ 200, together with
most ranks, arranged in isogeny classes.

2 Generators for the (rank 1) curves in Table 1. [Stephens,
Davenport]

3 Hecke eigenvalues for p < 100 for the associated
newforms. [Vélu, Stephens, Tingley]

4 All elliptic curves of conductor N = 2a3b. [Coghlan]
5 Dimensions of spaces of newforms for Γ0(N) for N ≤ 300.

[Atkin, Tingley]
6 Factorized supersingular j-polynomials for p ≤ 307. [Atkin]

Antwerp IV Table 1
“The origins of Table 1 are ... complicated”.

Swinnerton-Dyer searched for curves with small
coefficients, kept those with conductor N ≤ 200, added
curves obtained via a succession of 2- and 3-isogenies.
Higher degree isogenies checked using Vélu’s method;
some curves added.
Tingley computed newforms for N ≤ 300, revealing 30
gaps, which were then filled, in some cases by computing
the period lattice of the newform. For example

78A : Y2 + XY = X3 + X2 − 19X + 685.

Ranks computed by James Davenport using 2-descent.
List complete for certain N, such as N = 2a3b.
Tingley’s thesis (1975) contains curves with 200 < N ≤ 320
found via modular symbols, newforms and periods.

Antwerp IV Table 1
“The origins of Table 1 are ... complicated”.

Swinnerton-Dyer searched for curves with small
coefficients, kept those with conductor N ≤ 200, added
curves obtained via a succession of 2- and 3-isogenies.
Higher degree isogenies checked using Vélu’s method;
some curves added.
Tingley computed newforms for N ≤ 300, revealing 30
gaps, which were then filled, in some cases by computing
the period lattice of the newform. For example

78A : Y2 + XY = X3 + X2 − 19X + 685.

Ranks computed by James Davenport using 2-descent.
List complete for certain N, such as N = 2a3b.
Tingley’s thesis (1975) contains curves with 200 < N ≤ 320
found via modular symbols, newforms and periods.

1972–1982–1992–2002

No more systematic enumeration by conductor occurred
between 1972 and the mid 1980s.
1985–1988: Implementation of modular symbols for Γ0(N)
and Γ1(N) in Algol68

1988–1992: Preparation of tables for N ≤ 1000 (with
ranks, generators, isogenies), published in 1992.
1992–1997: Revisions, corrections, additional data
(modular parmetrization degrees), range extended to 5077
for online tables.
1997–2002: slow growth of conductor range. Online
publication: http://www.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/.

http://www.warwick.ac.uk/staff/J.E.Cremona/book/fulltext/

Algorithms and Implementation

Use modular symbols modulo N
Compute space of Γ0(N)-modular symbols [fast]

Find newforms for Γ0(N) with Hecke eigenvalues
Compute action of the Hecke algebra [quite fast]
Find one-dimensional rational eigenspaces: each
corresponds to a rational newform f [slow for large levels:
requires much RAM and is currently the main obstruction to
extending the tables.]

For each f , compute its periods and hence the associated
elliptic curve Ef [quite fast]
Use any available method to find Mordell-Weil groups,
isogenous curves, etc. [usually fast]

Algorithms and Implementation

Use modular symbols modulo N
Compute space of Γ0(N)-modular symbols [fast]

Find newforms for Γ0(N) with Hecke eigenvalues
Compute action of the Hecke algebra [quite fast]
Find one-dimensional rational eigenspaces: each
corresponds to a rational newform f [slow for large levels:
requires much RAM and is currently the main obstruction to
extending the tables.]

For each f , compute its periods and hence the associated
elliptic curve Ef [quite fast]
Use any available method to find Mordell-Weil groups,
isogenous curves, etc. [usually fast]

Algorithms and Implementation

Use modular symbols modulo N
Compute space of Γ0(N)-modular symbols [fast]

Find newforms for Γ0(N) with Hecke eigenvalues
Compute action of the Hecke algebra [quite fast]
Find one-dimensional rational eigenspaces: each
corresponds to a rational newform f [slow for large levels:
requires much RAM and is currently the main obstruction to
extending the tables.]

For each f , compute its periods and hence the associated
elliptic curve Ef [quite fast]

Use any available method to find Mordell-Weil groups,
isogenous curves, etc. [usually fast]

Algorithms and Implementation

Use modular symbols modulo N
Compute space of Γ0(N)-modular symbols [fast]

Find newforms for Γ0(N) with Hecke eigenvalues
Compute action of the Hecke algebra [quite fast]
Find one-dimensional rational eigenspaces: each
corresponds to a rational newform f [slow for large levels:
requires much RAM and is currently the main obstruction to
extending the tables.]

For each f , compute its periods and hence the associated
elliptic curve Ef [quite fast]
Use any available method to find Mordell-Weil groups,
isogenous curves, etc. [usually fast]

2001-2005

Date Conductor reached

Mar 2001 10000
Oct 2002 15000
Apr 2003 20000
Jun 2004 25000
Feb 2005 30000

Then the new computer was delivered. . .

22 Apr 2005 40000
27 May 2005 50000

9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000

26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000

3 Nov 2005 130000

2001-2005

Date Conductor reached

Mar 2001 10000
Oct 2002 15000
Apr 2003 20000
Jun 2004 25000
Feb 2005 30000

Then the new computer was delivered. . .

22 Apr 2005 40000
27 May 2005 50000

9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000

26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000

3 Nov 2005 130000

2001-2005

Date Conductor reached

Mar 2001 10000
Oct 2002 15000
Apr 2003 20000
Jun 2004 25000
Feb 2005 30000

Then the new computer was delivered. . .

22 Apr 2005 40000
27 May 2005 50000

9 Jun 2005 60000
20 Jun 2005 70000
14 Jul 2005 80000

26 Aug 2005 90000
31 Aug 2005 100000
18 Sep 2005 120000

3 Nov 2005 130000

2006-2010

The reason for stopping at 130000 was that the new
machine had 1024 processors but each only had 2G of
RAM, and more and more levels needed more than that.

During 2006 I rewrote the program, in particular the sparse
linear algebra code, hoping for an improvement.
From 2006-07-21 to 2006-09-06, i.e. 47 days, only 43
more levels were managed, reaching 130043.
Recently (on 2010-06-11) I restarted at N = 130044, which
took 66 hours (but only 2.5G max). Currently running:
N = 130052.
More work is needed on the code to get substantially
further.

2006-2010

The reason for stopping at 130000 was that the new
machine had 1024 processors but each only had 2G of
RAM, and more and more levels needed more than that.
During 2006 I rewrote the program, in particular the sparse
linear algebra code, hoping for an improvement.

From 2006-07-21 to 2006-09-06, i.e. 47 days, only 43
more levels were managed, reaching 130043.
Recently (on 2010-06-11) I restarted at N = 130044, which
took 66 hours (but only 2.5G max). Currently running:
N = 130052.
More work is needed on the code to get substantially
further.

2006-2010

The reason for stopping at 130000 was that the new
machine had 1024 processors but each only had 2G of
RAM, and more and more levels needed more than that.
During 2006 I rewrote the program, in particular the sparse
linear algebra code, hoping for an improvement.
From 2006-07-21 to 2006-09-06, i.e. 47 days, only 43
more levels were managed, reaching 130043.

Recently (on 2010-06-11) I restarted at N = 130044, which
took 66 hours (but only 2.5G max). Currently running:
N = 130052.
More work is needed on the code to get substantially
further.

2006-2010

The reason for stopping at 130000 was that the new
machine had 1024 processors but each only had 2G of
RAM, and more and more levels needed more than that.
During 2006 I rewrote the program, in particular the sparse
linear algebra code, hoping for an improvement.
From 2006-07-21 to 2006-09-06, i.e. 47 days, only 43
more levels were managed, reaching 130043.
Recently (on 2010-06-11) I restarted at N = 130044, which
took 66 hours (but only 2.5G max). Currently running:
N = 130052.

More work is needed on the code to get substantially
further.

2006-2010

The reason for stopping at 130000 was that the new
machine had 1024 processors but each only had 2G of
RAM, and more and more levels needed more than that.
During 2006 I rewrote the program, in particular the sparse
linear algebra code, hoping for an improvement.
From 2006-07-21 to 2006-09-06, i.e. 47 days, only 43
more levels were managed, reaching 130043.
Recently (on 2010-06-11) I restarted at N = 130044, which
took 66 hours (but only 2.5G max). Currently running:
N = 130052.
More work is needed on the code to get substantially
further.

The next goal

Of course, this could go on for ever! So what is a reasonable
goal to aim for?

All elliptic curves with N ≤ 130000 have rank r ≤ 3. (The
number with r = 3 is 908.) What is the smallest conductor of a
curve of rank 4?

sage : [(r, elliptic curves.rank(r)[0].conductor())
for r in range(6)]

[(0, 11), (1, 37), (2, 389), (3, 5077), (4, 234446), (5, 19047851)]

To prove that N = 234446 is the smallest rank 4 conductor
would require finding all elliptic curves for
130001 ≤ N ≤ 234445, which would take a few hundred
processor-years with the current code.

The next goal

Of course, this could go on for ever! So what is a reasonable
goal to aim for?
All elliptic curves with N ≤ 130000 have rank r ≤ 3. (The
number with r = 3 is 908.)

What is the smallest conductor of a
curve of rank 4?

sage : [(r, elliptic curves.rank(r)[0].conductor())
for r in range(6)]

[(0, 11), (1, 37), (2, 389), (3, 5077), (4, 234446), (5, 19047851)]

To prove that N = 234446 is the smallest rank 4 conductor
would require finding all elliptic curves for
130001 ≤ N ≤ 234445, which would take a few hundred
processor-years with the current code.

The next goal

Of course, this could go on for ever! So what is a reasonable
goal to aim for?
All elliptic curves with N ≤ 130000 have rank r ≤ 3. (The
number with r = 3 is 908.) What is the smallest conductor of a
curve of rank 4?

sage : [(r, elliptic curves.rank(r)[0].conductor())
for r in range(6)]

[(0, 11), (1, 37), (2, 389), (3, 5077), (4, 234446), (5, 19047851)]

To prove that N = 234446 is the smallest rank 4 conductor
would require finding all elliptic curves for
130001 ≤ N ≤ 234445, which would take a few hundred
processor-years with the current code.

The next goal

Of course, this could go on for ever! So what is a reasonable
goal to aim for?
All elliptic curves with N ≤ 130000 have rank r ≤ 3. (The
number with r = 3 is 908.) What is the smallest conductor of a
curve of rank 4?

sage : [(r, elliptic curves.rank(r)[0].conductor())
for r in range(6)]

[(0, 11), (1, 37), (2, 389), (3, 5077), (4, 234446), (5, 19047851)]

To prove that N = 234446 is the smallest rank 4 conductor
would require finding all elliptic curves for
130001 ≤ N ≤ 234445, which would take a few hundred
processor-years with the current code.

Verifying BSD by computing ranks

In order to verify “weak BSD” for a given curve, we need to
compute two numbers:

1 the analytic rank ran of E
2 the algebraic rank rE of E(Q)

and check that they are equal.

We know that
ran ≤ 1 =⇒ rE = ran, but in this case we still have to prove that
ran = 0 or 1!
To determine ran, we use the L-series L(E, s) = L(f , s), where f
is the associated modular form.
For rE, we use 2-descent (for example) –unless ran ≤ 1.

Verifying BSD by computing ranks

In order to verify “weak BSD” for a given curve, we need to
compute two numbers:

1 the analytic rank ran of E
2 the algebraic rank rE of E(Q)

and check that they are equal. We know that
ran ≤ 1 =⇒ rE = ran, but in this case we still have to prove that
ran = 0 or 1!

To determine ran, we use the L-series L(E, s) = L(f , s), where f
is the associated modular form.
For rE, we use 2-descent (for example) –unless ran ≤ 1.

Verifying BSD by computing ranks

In order to verify “weak BSD” for a given curve, we need to
compute two numbers:

1 the analytic rank ran of E
2 the algebraic rank rE of E(Q)

and check that they are equal. We know that
ran ≤ 1 =⇒ rE = ran, but in this case we still have to prove that
ran = 0 or 1!
To determine ran, we use the L-series L(E, s) = L(f , s), where f
is the associated modular form.

For rE, we use 2-descent (for example) –unless ran ≤ 1.

Verifying BSD by computing ranks

In order to verify “weak BSD” for a given curve, we need to
compute two numbers:

1 the analytic rank ran of E
2 the algebraic rank rE of E(Q)

and check that they are equal. We know that
ran ≤ 1 =⇒ rE = ran, but in this case we still have to prove that
ran = 0 or 1!
To determine ran, we use the L-series L(E, s) = L(f , s), where f
is the associated modular form.
For rE, we use 2-descent (for example) –unless ran ≤ 1.

Determining the analytic rank I: the good news

As before let E be an elliptic curve with associated rational
newform f .

Modular symbol computations can tell us
1 The sign of the functional equation of L(f , s) (= minus the

eigenvalus of the Fricke involution WN on f);
2 the value of L(f , 1)/Ω0(f) ∈ Q, and in particular whether it

is 0.
Hence we can easily decide whether ran = 0, ran is positive and
odd, or ran is positive and even.
If ran is positive and odd, we compute L′(f , 1); if that is nonzero
we know that ran = 1 (and hence rE = 1).
If ran is positive and even, we compute L′′(f , 1); if nonzero then
ran = 2. Now we also verify that rE = 2 and are done.

Determining the analytic rank I: the good news

As before let E be an elliptic curve with associated rational
newform f .Modular symbol computations can tell us

1 The sign of the functional equation of L(f , s) (= minus the
eigenvalus of the Fricke involution WN on f);

2 the value of L(f , 1)/Ω0(f) ∈ Q, and in particular whether it
is 0.

Hence we can easily decide whether ran = 0, ran is positive and
odd, or ran is positive and even.
If ran is positive and odd, we compute L′(f , 1); if that is nonzero
we know that ran = 1 (and hence rE = 1).
If ran is positive and even, we compute L′′(f , 1); if nonzero then
ran = 2. Now we also verify that rE = 2 and are done.

Determining the analytic rank I: the good news

As before let E be an elliptic curve with associated rational
newform f .Modular symbol computations can tell us

1 The sign of the functional equation of L(f , s) (= minus the
eigenvalus of the Fricke involution WN on f);

2 the value of L(f , 1)/Ω0(f) ∈ Q, and in particular whether it
is 0.

Hence we can easily decide whether ran = 0, ran is positive and
odd, or ran is positive and even.

If ran is positive and odd, we compute L′(f , 1); if that is nonzero
we know that ran = 1 (and hence rE = 1).
If ran is positive and even, we compute L′′(f , 1); if nonzero then
ran = 2. Now we also verify that rE = 2 and are done.

Determining the analytic rank I: the good news

As before let E be an elliptic curve with associated rational
newform f .Modular symbol computations can tell us

1 The sign of the functional equation of L(f , s) (= minus the
eigenvalus of the Fricke involution WN on f);

2 the value of L(f , 1)/Ω0(f) ∈ Q, and in particular whether it
is 0.

Hence we can easily decide whether ran = 0, ran is positive and
odd, or ran is positive and even.
If ran is positive and odd, we compute L′(f , 1); if that is nonzero
we know that ran = 1 (and hence rE = 1).

If ran is positive and even, we compute L′′(f , 1); if nonzero then
ran = 2. Now we also verify that rE = 2 and are done.

Determining the analytic rank I: the good news

As before let E be an elliptic curve with associated rational
newform f .Modular symbol computations can tell us

1 The sign of the functional equation of L(f , s) (= minus the
eigenvalus of the Fricke involution WN on f);

2 the value of L(f , 1)/Ω0(f) ∈ Q, and in particular whether it
is 0.

Hence we can easily decide whether ran = 0, ran is positive and
odd, or ran is positive and even.
If ran is positive and odd, we compute L′(f , 1); if that is nonzero
we know that ran = 1 (and hence rE = 1).
If ran is positive and even, we compute L′′(f , 1); if nonzero then
ran = 2. Now we also verify that rE = 2 and are done.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0?

We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3. So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD; while if ran ≥ 4
we have no way of determining its value exactly.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0? We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3.

So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD; while if ran ≥ 4
we have no way of determining its value exactly.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0? We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3. So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD; while if ran ≥ 4
we have no way of determining its value exactly.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0? We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3. So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD; while if ran ≥ 4
we have no way of determining its value exactly.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0? We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3. So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD;

while if ran ≥ 4
we have no way of determining its value exactly.

Determining the analytic rank II: the bad news

What if ran is odd and L′(f , 1) appears to be 0? We then expect
that ran = 3. We can prove that ran ≥ 3 by checking that rE ≥ 3
(for example, by 2-descent). Then we may then compute
L′′′(f , 1), expecting it to be nonzero when rE = 3 so that also
ran = 3. So far so good!

What if ran is even and L′′(f , 1) appears to be 0? (This happens
with a newform at level 234446, for example.) Now we have no
way to prove that ran > 2! So we can not verify BSD in such a
case (even though, as in this example, rE = 4).

In summary: if ran ≤ 3 then we can determine its value
unconditionally and hence verify (weak) BSD; while if ran ≥ 4
we have no way of determining its value exactly.

