Affine Stanley symmetric functions

Anne Schilling

Department of Mathematics University of California at Davis

Fields Institute, Toronto, May 5, 2010

"Real life example" for quotient space in Sage that Jason introduced:

- Λ ring of symmetric functions
- Monomial symmetric functions m_λ
- $\Lambda_{(k)} = \Lambda/\langle m_{\lambda} \mid \lambda_1 > k \rangle$
- dual k-Schur function $\mathfrak{S}_{\lambda}^{(k)}$ labeled by k-bounded partitions λ form basis for $\Lambda_{(k)}$
- How to access them in Sage?

Outline

- Stanley symmetric functions
 - Definition
 - Properties
- Type A affine Stanley symmetric functions
 - Cyclically decreasing words
 - Affine Stanley symmetric functions
 - Properties
- Behind the curtain
- **Characters**

Outline

- Stanley symmetric functions
 - Definition
 - Properties
- Type A affine Stanley symmetric functions
 - Cyclically decreasing words
 - Affine Stanley symmetric functions
 - Properties

Symmetric group

00000

Definition (Symmetric group)

The symmetric group S_n

- generators s_1, \ldots, s_{n-1}
- relations

$$s_i s_j = s_j s_i$$
 for $|i-j| \ge 2$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$
 $s_i^2 = 1$

Stanley symmetric functions

Introduced in 1984 by Stanley

- used to study # of reduced words of $w \in S_n$
- closely related to Schubert polynomials of Lascoux and Schützenberger (related to geometry of flag varieties)

nilCoxeter algebra

Definition (nilCoxeter algebra)

The nilCoxeter algebra

- generators u_1, \ldots, u_{n-1}
- relations

$$u_i u_j = u_j u_i$$
 for $|i - j| \ge 2$
 $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1}$
 $u_i^2 = 0$

 $\mathbb{C}[S_n]$ group algebra of symmetric group inner product $\langle w, v \rangle = \delta_{w,v}$ linear operators $u_i : \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ for $1 \le i < n$

$$u_i w = \begin{cases} s_i w & \text{if } \ell(s_i w) > \ell(w) \\ 0 & \text{else} \end{cases}$$

nilCoxeter algebra

Definition (nilCoxeter algebra)

The nilCoxeter algebra

- generators u_1, \ldots, u_{n-1}
- relations

$$u_i u_j = u_j u_i$$
 for $|i - j| \ge 2$
 $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1}$
 $u_i^2 = 0$

 $\mathbb{C}[S_n]$ group algebra of symmetric group inner product $\langle w, v \rangle = \delta_{w,v}$ linear operators $u_i : \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ for $1 \le i < n$

Definition

...by Fomin-Stanley using the nilCoxeter algebra

Definition

$$F_w(x) = \sum_{a=(a_1,\ldots,a_\ell)} \langle A_{a_\ell}(u)\cdots A_{a_1}(u)\cdot 1, w\rangle x_1^{a_1}\cdots x_\ell^{a_\ell}$$

where a is a composition and

$$A_k(u) = \sum_{b_1 > \dots > b_k} u_{b_1} \cdots u_{b_k}$$

$$F_{w} = \lim_{s \to \infty} \mathfrak{S}_{1^{s} \times w}$$

Definition

...by Fomin-Stanley using the nilCoxeter algebra

Definition

$$F_w(x) = \sum_{a=(a_1,\ldots,a_\ell)} \langle A_{a_\ell}(u)\cdots A_{a_1}(u)\cdot 1, w\rangle x_1^{a_1}\cdots x_\ell^{a_\ell}$$

where a is a composition and

$$A_k(u) = \sum_{b_1 > \dots > b_k} u_{b_1} \cdots u_{b_k}$$

- symmetry follows since $A_k(u)$ commute

$$F_{w} = \lim_{s \to \infty} \mathfrak{S}_{1^{s} \times w}$$

Definition

...by Fomin-Stanley using the nilCoxeter algebra

Definition

$$F_{w}(x) = \sum_{a=(a_1,\ldots,a_\ell)} \langle A_{a_\ell}(u)\cdots A_{a_1}(u)\cdot 1, w\rangle x_1^{a_1}\cdots x_\ell^{a_\ell}$$

where a is a composition and

$$A_k(u) = \sum_{b_1 > \dots > b_k} u_{b_1} \cdots u_{b_k}$$

- symmetry follows since $A_k(u)$ commute
- Stanley symmetric functions are stable limits of Schubert polynomials

$$F_w = \lim_{s \to \infty} \mathfrak{S}_{1^s \times w}$$

Properties

Theorem (Stanley)

- \bullet $F_w(x)$ is a symmetric function.

$$F_w = m_{\mu(w)} + \sum_{\lambda < \mu(w)} a_{w\lambda} m_{\lambda}$$

Properties

Theorem (Stanley)

- \bullet $F_w(x)$ is a symmetric function.
- $[x_1 \cdots x_{\ell(w)}] F_w(x) = number of reduced words for w$

$$F_W = m_{\mu(w)} + \sum_{\lambda < \mu(w)} a_{w\lambda} m_{\lambda}$$

Properties

Theorem (Stanley)

- \bullet $F_w(x)$ is a symmetric function.
- $[x_1 \cdots x_{\ell(w)}] F_w(x) = number of reduced words for w$
- Unique dominant term in monomial expansion:

$$F_w = m_{\mu(w)} + \sum_{\lambda < \mu(w)} a_{w\lambda} m_{\lambda}$$

Properties

Theorem (Stanley)

- \bullet $F_w(x)$ is a symmetric function.
- $[x_1 \cdots x_{\ell(w)}] F_w(x) = number of reduced words for w$
- **1 Unique dominant term** in monomial expansion:

$$F_w = m_{\mu(w)} + \sum_{\lambda < \mu(w)} a_{w\lambda} m_{\lambda}$$

1 Conjugacy formula: $\omega(F_w) = F_{w^*}$ where $*: w_1 \cdots w_n \rightarrow (n+1-w_n) \cdots (n+1-w_1)$

Theorem (Edelman-Greene, Lascoux-Schützenberger)

The coefficients $a_{w\lambda}$ in the Schur expansion $F_w = \sum_{\lambda} a_{w\lambda} s_{\lambda}$ are nonnegative.

Properties

Theorem (Stanley)

- \bullet $F_w(x)$ is a symmetric function.
- 2 $[x_1 \cdots x_{\ell(w)}] F_w(x) = number of reduced words for w$
- **1 Unique dominant term** in monomial expansion:

$$F_w = m_{\mu(w)} + \sum_{\lambda < \mu(w)} a_{w\lambda} m_{\lambda}$$

3 Conjugacy formula: $\omega(F_w) = F_{w^*}$ where $*: w_1 \cdots w_n \rightarrow (n+1-w_n) \cdots (n+1-w_1)$

Theorem (Edelman-Greene, Lascoux-Schützenberger)

The coefficients $a_{w\lambda}$ in the Schur expansion $F_w = \sum_{\lambda} a_{w\lambda} s_{\lambda}$ are nonnegative.

Outline

Stanley symmetric functions

- Stanley symmetric functions
 - Definition
 - Properties
- Type A affine Stanley symmetric functions
 - Cyclically decreasing words
 - Affine Stanley symmetric functions
 - Properties

Reference

Type A affine Stanley symmetric functions:

Thomas I am Affine Stanley symmetric functions J. Amer. Math. Soc. 21 (2008), no. 1, 259-281

Reference

Type A affine Stanley symmetric functions:

Thomas I am Affine Stanley symmetric functions J. Amer. Math. Soc. 21 (2008), no. 1, 259-281

Type C affine Stanley symmetric functions

 Thomas Lam, Anne Schilling, Mark Shimozono Schubert Polynomials for the affine Grassmannian of the symplectic group Mathematische Zeitschrift 264(4) (2010) 765-811

Reference

Type A affine Stanley symmetric functions:

Thomas I am Affine Stanley symmetric functions J. Amer. Math. Soc. 21 (2008), no. 1, 259-281

Type C affine Stanley symmetric functions

 Thomas Lam, Anne Schilling, Mark Shimozono Schubert Polynomials for the affine Grassmannian of the symplectic group Mathematische Zeitschrift 264(4) (2010) 765-811

Type B/D affine Stanley symmetric functions:

Steve Pon PhD Thesis

Affine symmetric group

Definition

The affine symmetric group \hat{S}_n

- generators $s_0, s_1, \ldots, s_{n-1}$
- relations

$$s_i s_j = s_j s_i$$
 for $|i-j| \ge 2$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$
 $s_i^2 = 1$

Affine symmetric group

Definition

The affine symmetric group \hat{S}_n

- generators $s_0, s_1, \ldots, s_{n-1}$
- relations

$$s_i s_j = s_j s_i$$
 for $|i - j| \ge 2$
 $s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$
 $s_i^2 = 1$

Remark

All indices $i \in [0, n-1]$ are taken modulo n.

Affine nilCoxeter algebra

Definition

Stanley symmetric functions

The affine nilCoxeter algebra U_n

- generators u_0, u_1, \dots, u_{n-1}
- relations

$$u_i u_j = u_j u_i$$
 for $|i - j| \ge 2$
 $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1}$
 $u_i^2 = 0$

$$u_i w = \begin{cases} s_i w & \text{if } \ell(s_i w) > \ell(w) \\ 0 & \text{else} \end{cases}$$

Affine nilCoxeter algebra

Definition

Stanley symmetric functions

The affine nilCoxeter algebra U_n

- generators $u_0, u_1, \ldots, u_{n-1}$
- relations

$$u_i u_j = u_j u_i$$
 for $|i - j| \ge 2$
 $u_i u_{i+1} u_i = u_{i+1} u_i u_{i+1}$
 $u_i^2 = 0$

Representation of U_n on $\mathbb{C}[\hat{S}_n]$

$$u_i w = egin{cases} s_i w & ext{if } \ell(s_i w) > \ell(w) \\ 0 & ext{else} \end{cases}$$

Cyclically decreasing words

Definition

Let $a = a_1 a_2 \dots a_k$ be a word without repetition, $a_i \in [0, n-1]$.

 $A=\{a_1,\ldots,a_k\}\subset [0,n-1].$

a is cyclically decreasing if for all i such that $i, i + 1 \in A$, i + 1 preceds i in a.

Example

n = 9

The word 082654 is cyclically decreasing.

Definition

 $u \in U_n$ is cyclically decreasing if $u = u_a = u_{a_1} \cdots u_{a_k}$ for some cyclically decreasing word a.

Cyclically decreasing words

Definition

Let $a = a_1 a_2 \dots a_k$ be a word without repetition, $a_i \in [0, n-1]$.

 $A = \{a_1, \ldots, a_k\} \subset [0, n-1].$

a is cyclically decreasing if for all i such that $i, i + 1 \in A, i + 1$ preceeds i in a.

Example

n=9

The word 082654 is cyclically decreasing.

Cyclically decreasing words

Definition

Let $a = a_1 a_2 \dots a_k$ be a word without repetition, $a_i \in [0, n-1]$. $A = \{a_1, \ldots, a_k\} \subset [0, n-1].$

a is cyclically decreasing if for all i such that $i, i + 1 \in A, i + 1$ preceeds i in a.

Example

n=9

The word 082654 is cyclically decreasing.

Definition

 $u \in U_n$ is cyclically decreasing if $u = u_a = u_{a_1} \cdots u_{a_k}$ for some cyclically decreasing word a.

u is completely determined by $A\Rightarrow$ write $u_{A_{\square}}$

Definition

$$\tilde{F}_{w}(x) = \sum_{a=(a_1,\ldots,a_\ell)} \langle h_{a_\ell}(u)\cdots h_{a_1}(u)\cdot 1,w\rangle x_1^{a_1}\cdots x_\ell^{a_\ell}$$

where

$$h_k(u) = \sum_{A \in \binom{[0,n-1]}{k}} u_A$$

Subspaces of A

Λ ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 \leq k\}$ k = n - 1

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$
$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

Subspaces of A

A ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 \leq k\}$ k = n - 1

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

Hall inner product $\langle \cdot, \cdot \rangle$:

for $f \in \Lambda_{(k)}$ and $g \in \Lambda^{(k)}$ define $\langle f, g \rangle$ as the usual Hall inner product in Λ

 $\{h_{\lambda}\}\$ and $\{m_{\lambda}\}\$ with $\lambda\in\mathcal{P}^{k}$ form dual bases of $\Lambda_{(k)}$ and $\Lambda^{(k)}$

Subspaces of A

A ring of symmetric functions \mathcal{P}^k set of partitions $\{\lambda \mid \lambda_1 < k\}$ k = n - 1

$$\Lambda_{(k)} := \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle e_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle = \mathbb{C}\langle p_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

$$\Lambda^{(k)} := \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k} \rangle$$

Hall inner product $\langle \cdot, \cdot \rangle$:

for $f \in \Lambda_{(k)}$ and $g \in \Lambda^{(k)}$ define $\langle f, g \rangle$ as the usual Hall inner product in A

 $\{h_{\lambda}\}\$ and $\{m_{\lambda}\}\$ with $\lambda\in\mathcal{P}^{k}$ form dual bases of $\Lambda_{(k)}$ and $\Lambda^{(k)}$

- is a subalgebra $\Lambda_{(k)}$
- is **not** closed under multiplication, but comultiplication

Properties

Theorem

- \bullet $\tilde{F}_w(x)$ is a symmetric function in $\Lambda^{(k)}$
- ② $[x_1 \cdots x_{\ell(w)}] \tilde{F}_w(x) = number of reduced words for w$
- Unique dominant term in monomial expansion:

$$\tilde{F}_{w} = m_{\mu(w)} + \sum_{\lambda < \mu(w)} b_{w\lambda} m_{\lambda}$$

Onjugacy formula: $\tilde{F}_{w^*} = \omega^+(\tilde{F}_w)$

Properties

Theorem

- \bullet $\tilde{F}_w(x)$ is a symmetric function in $\Lambda^{(k)}$
- $[x_1 \cdots x_{\ell(w)}] \tilde{F}_w(x) = number of reduced words for w$

$$\tilde{F}_{w} = m_{\mu(w)} + \sum_{\lambda < \mu(w)} b_{w\lambda} m_{\lambda}$$

Properties

Theorem

- \bullet $\tilde{F}_w(x)$ is a symmetric function in $\Lambda^{(k)}$
- $[x_1 \cdots x_{\ell(w)}] \tilde{F}_w(x) = number of reduced words for w$
- Unique dominant term in monomial expansion:

$$ilde{\mathcal{F}}_{w} = \mathit{m}_{\mu(w)} + \sum_{\lambda < \mu(w)} \mathit{b}_{w\lambda} \mathit{m}_{\lambda}$$

Properties

Theorem

- \bullet $\tilde{F}_w(x)$ is a symmetric function in $\Lambda^{(k)}$
- $[x_1 \cdots x_{\ell(w)}] \tilde{F}_w(x) = number of reduced words for w$
- Unique dominant term in monomial expansion:

$$ilde{F}_{w} = m_{\mu(w)} + \sum_{\lambda < \mu(w)} b_{w\lambda} m_{\lambda}$$

4 Conjugacy formula: $\tilde{F}_{w^*} = \omega^+(\tilde{F}_w)$

Grassmannian elements

Definition

 $w \in \tilde{S}_n$ is Grassmannian if it is a minimal coset representative of S_n/S_n (i.e. all reduced words end in s_0).

Grassmannian elements

Definition

Stanley symmetric functions

 $w \in \tilde{S}_n$ is Grassmannian if it is a minimal coset representative of S_n/S_n (i.e. all reduced words end in s_0).

Theorem

 $\{\tilde{F}_w \mid w \in \tilde{S}_n/S_n\}$ form a basis of $\Lambda^{(k)}$ for k = n - 1.

 F_w indexed by Grassmannians are the dual k-Schur functions of Lapointe-Morse $\mathfrak{S}_{\lambda}^{(k)} \in \Lambda^{(k)}$.

Grassmannian elements

Definition

 $w \in \tilde{S}_n$ is Grassmannian if it is a minimal coset representative of S_n/S_n (i.e. all reduced words end in s_0).

Theorem

 $\{\tilde{F}_w \mid w \in \tilde{S}_n/S_n\}$ form a basis of $\Lambda^{(k)}$ for k = n - 1.

 F_w indexed by Grassmannians are the dual k-Schur functions of Lapointe-Morse $\mathfrak{S}_{\lambda}^{(k)} \in \Lambda^{(k)}$.

Definition

k-Schur functions are the dual basis in $\Lambda_{(k)}$ of $\{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\}$.

Bijection
$$\tilde{S}_n/S_n \to \mathcal{P}^k$$

$$\begin{split} \{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda^{(k)} = \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \\ \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda_{(k)} = \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \end{split}$$

$$\langle oldsymbol{s}_{\mu}^{(k)}, oldsymbol{\mathfrak{S}}_{\lambda}^{(k)}
angle = \delta_{\lambda\mu}$$
 dual bases

0000000

Bijection
$$\tilde{\mathcal{S}}_n/\mathcal{S}_n \to \mathcal{P}^k$$

Type A affine Stanley symmetric functions

$$\begin{split} \{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda^{(k)} = \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \\ \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda_{(k)} = \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \end{split}$$

$$\langle oldsymbol{s}_{\mu}^{(k)}, \mathfrak{S}_{\lambda}^{(k)}
angle = \delta_{\lambda\mu}$$
 dual bases

0000000

Bijection
$$\tilde{S}_n/S_n \to \mathcal{P}^k$$

Type A affine Stanley symmetric functions

$$\begin{split} \{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda^{(k)} = \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \\ \{s_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^k\} & \text{ basis of } \Lambda_{(k)} = \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^k \rangle \end{split}$$

$$\langle oldsymbol{s}_{\mu}^{(k)}, \mathfrak{S}_{\lambda}^{(k)}
angle = \delta_{\lambda\mu}$$
 dual bases

Bijection
$$\tilde{S}_n/S_n \to \mathcal{P}^k$$

$$\{\mathfrak{S}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^{k}\} \quad \text{basis of } \Lambda^{(k)} = \mathbb{C}\langle m_{\lambda} \mid \lambda \in \mathcal{P}^{k}\rangle$$
$$\{\mathbf{s}_{\lambda}^{(k)} \mid \lambda \in \mathcal{P}^{k}\} \quad \text{basis of } \Lambda_{(k)} = \mathbb{C}\langle h_{\lambda} \mid \lambda \in \mathcal{P}^{k}\rangle$$

$$\langle \pmb{s}_{\mu}^{(\pmb{k})}, \mathfrak{S}_{\lambda}^{(\pmb{k})}
angle = \delta_{\lambda\mu}$$
 dual bases

Outline

Stanley symmetric functions

- Stanley symmetric functions
 - Definition
 - Properties
- Type A affine Stanley symmetric functions
 - Cyclically decreasing words
 - Affine Stanley symmetric functions
 - Properties
- Behind the curtain

Stanley symmetric functions

Behind the curtain

Stanley symmetric functions

Behind the curtain

Outline

- Stanley symmetric functions
 - Definition
 - Properties
- Type A affine Stanley symmetric functions
 - Cyclically decreasing words
 - Affine Stanley symmetric functions
 - Properties
- **Characters**

Reference

Jason Bandlow, Anne Schilling, Mike Zabrocki
 The Murnaghan-Nakayama rule for k-Schur functions
 preprint arXiv:1004.4886

Characters

k-characters:

$$oldsymbol{
ho}_
u = \sum_{\lambda \in \mathcal{D}^k} \chi_{\lambda,
u}^{(k)} \; oldsymbol{s}_\lambda^{(k)}$$

$$\mathfrak{S}_{\nu}^{(k)} = \sum_{\lambda \in \mathcal{P}^k} \frac{1}{z_{\lambda}} \chi_{\nu,\lambda}^{(k)} \, p_{\lambda}$$

Dual version:

$$p_{\nu} = \sum_{\lambda \in \mathcal{D}^k} \tilde{\chi}_{\lambda, \nu}^{(k)} \, \mathfrak{S}_{\lambda}^{(k)}$$

$$s_{
u}^{(k)} = \sum_{\lambda \in \mathcal{D}_k} \frac{1}{Z_{\lambda}} \tilde{\chi}_{
u,\lambda}^{(k)} p_{\lambda}$$