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"Real life example” for quotient space in Sage that Jason
introduced:

@ A ring of symmetric functions
@ Monomial symmetric functions my
@ Aky =N/ {my |\ > k)

° dual k-Schur function 6 ) labeled by k-bounded partitions
A form basis for A

@ How to access them in Sage?
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Symmetric group

Definition (Symmetric group)

The symmetric group S,
@ generators sy, ...,S5_1
@ relations

SiSj = §jS; for|i—j| > 2
SiSi+1Si = Si+15iSi+1

s2 =1
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Stanley symmetric functions

Introduced in 1984 by Stanley
@ used to study # of reduced words of w € S,

@ closely related to Schubert polynomials of Lascoux and
Schitzenberger (related to geometry of flag varieties)
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nilCoxeter algebra

Definition (nilCoxeter algebra)

The nilCoxeter algebra
@ generators uy,..., Uy 1
@ relations

Uiy = Uju; for|i—j| >2
Uilip1Uj = Ujp1UjUi14
u? =0
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nilCoxeter algebra

Definition (nilCoxeter algebra)

The nilCoxeter algebra
@ generators uy,..., Uy 1
@ relations
Uiy = Uju; for|i—j| >2
Uilip1Uj = Ujp1UjUi14
u? =0

C[Sn] group algebra of symmetric group
inner product (w, v) = dw v
linear operators u; : C[Sy] — C[Sy]for1 <i<n

{s,-w if ¢(s;w) > £(w)

uiw =
0 else
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Definition

...by Fomin-Stanley using the nilCoxeter algebra

FW(X): Z <Aaz(u)”'Aa1(u)‘17W>X1a1"'Xeae

a=(ay,...,ap)

where ais a composition and

Au) = Y Up U,

by >+ >by
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Definition

...by Fomin-Stanley using the nilCoxeter algebra

FW(X): Z <Aaz(u)”'Aa1(u)‘17W>X1a1"'Xeae

a=(ay,...,ap)

where ais a composition and

Au) = Y Up U,

by >+ >by

@ symmetry follows since Ax(u) commute
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Definition

...by Fomin-Stanley using the nilCoxeter algebra

FW(X): Z <Aaz(u)”'Aa1(u)‘17W>X1a1"'Xeae

a=(ay,...,ap)

where ais a composition and

Au) = Y Up U,

by >+ >by

@ symmetry follows since Ax(u) commute
@ Stanley symmetric functions are stable limits of Schubert
polynomials
Fw = s“—>n:>]o Sisxw
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Properties

Theorem (Stanley)

Q@ F,(x) is a symmetric function.
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Theorem (Stanley)

Q@ F,(x) is a symmetric function.
Q [x1 - Xyw)]Fw(x) = number of reduced words for w




Stanley symmetric functions
L]

Properties

Theorem (Stanley)

Q@ F,(x) is a symmetric function.
Q [x1 - Xyw)]Fw(x) = number of reduced words for w

© Unique dominant term in monomial expansion:

Fw =m,w) + Z awx My
A<p(w)
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Properties

Theorem (Stanley)

Q@ F,(x) is a symmetric function.
Q [x1 - Xyw)]Fw(x) = number of reduced words for w

© Unique dominant term in monomial expansion:

Fw =m,w) + Z awx My
A<p(w)

© Conjugacy formula: w(F,) = F,~ where
k:WyoWp— (N+1—wp)---(n+1—wp)
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Properties

Theorem (Stanley)

Q@ F,(x) is a symmetric function.
Q [x1 - Xyw)]Fw(x) = number of reduced words for w

© Unique dominant term in monomial expansion:

Fw =m,w) + Z awx My
A<p(w)

© Conjugacy formula: w(F,) = F,~ where
k:WyoWp— (N+1—wp)---(n+1—wp)

Theorem (Edelman-Greene, Lascoux-Schiitzenberger)

The coefficients ayy in the Schur expansion Fy, =, awxSx
are nonnegative.
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Type A affine Stanley symmetric functions:

@ Thomas Lam
Affine Stanley symmetric functions
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Affine symmetric group

The affine symmetric group S,

@ generators sp, S1,...,Sn_1

@ relations
SiSj = §;S; for|i—j|>2
SiSit+1Si = Sj+1SiSj+1

§2 =1




Type A affine Stanley symmetric functions
[ Jele]

Affine symmetric group

The affine symmetric group S,

@ generators sp, S1,...,Sn_1

@ relations
SiSj = §;S; for|i—j|>2
SiSit+1Si = Sj+1SiSj+1

s?=1

All'indices i € [0, n — 1] are taken modulo n.
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Affine nilCoxeter algebra

The affine nilCoxeter algebra U,
@ generators up, Uy, ..., Un_1
@ relations

Uilj = U;u; for|i—j]|>2
Uilj1U; = Uit Ujlj
v =0
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Affine nilCoxeter algebra

The affine nilCoxeter algebra U,
@ generators up, Uy, ..., Un_1
@ relations

Uilj = U;u; for|i—j]|>2
Uilj1U; = Uit Ujlj
v =0

Representation of U, on C[S;]

uw = siw ifl(siw) > £(w)
0 else
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Cyclically decreasing words

Definition

Let a= aja...ax be a word without repetition, a; € [0, n — 1].
A={ay,...,a} C[0,n—1].

ais cyclically decreasing if for all i such that j,i +1 € A, i + 1
preceeds i in a.
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Cyclically decreasing words

Definition

Let a= aja...ax be a word without repetition, a; € [0, n — 1].
A={ay,...,a} C[0,n—1].

ais cyclically decreasing if for all i such that j,i +1 € A, i + 1
preceeds i in a. )
(Example
n=9

The word 082654 is cyclically decreasing.
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Cyclically decreasing words

Definition

Let a= aja...ax be a word without repetition, a; € [0, n — 1].
A={ay,...,a} C[0,n—1].

ais cyclically decreasing if for all i such that j,i +1 € A, i + 1
preceeds i in a. )
(Example
n=9

The word 082654 is cyclically decreasing.

Definition

u € Uy is cyclically decreasing if u = Uz = Uy, - - - Ua, for some
cyclically decreasing word a.

u is completely determined by A = write ux4
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Affine Stanley symmetric functions

Fu) = 3 (ha(0)---hay (1) 1, w)x@ - x
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Subspaces of A

A ring of symmetric functions
Pk set of partitions {\ | A\ <k} k=n-—1

Ny = C(hy | X € PK) =C(ey | A € PF) = Cpy | A € PX)
AR = C(my | X e PK)
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Subspaces of A

A ring of symmetric functions
Pk set of partitions {\ | A\ <k} k=n-—1

Ny = C(hy | X € PK) =C(ey | A € PF) = Cpy | A € PX)
AR = C(my | X e PK)

Hall inner product (-, -):

for f € Ay and g € AX) define (f, g) as the usual Hall inner
product in A

{h\} and {m,} with A € P* form dual bases of A ) and AK)
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Subspaces of A

A ring of symmetric functions
Pk set of partitions {\ | A\ <k} k=n-—1

Ny = C(hy | X € PK) =C(ey | A € PF) = Cpy | A € PX)
AR = C(my | X e PK)

Hall inner product (-, -):

for f € Ay and g € AX) define (f, g) as the usual Hall inner
product in A

{h\} and {m,} with A € P* form dual bases of A ) and AK)

Ak s a subalgebra

A%) " is not closed under multiplication, but comultiplication
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Properties

Q Fu(x) is a symmetric function in A(¥)
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Properties

Q Fu(x) is a symmetric function in A(¥)
Q [x1 - Xyw)Fw(x) = number of reduced words for w
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Properties

Q F.(x) is a symmetric function in AK)
Q [x1 - Xyw)Fw(x) = number of reduced words for w
© Unique dominant term in monomial expansion:

—_ mMyuwy + Z by xmy
A<p(w)
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Properties

Q F.(x) is a symmetric function in AK)
Q [x1 - Xyw)Fw(x) = number of reduced words for w
© Unique dominant term in monomial expansion:

—_ mMyuwy + Z by xmy
A<p(w)

Q Conjugacy formula: F, = wt(F,)
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Grassmannian elements

Definition

w e S, is Grassmannian if it is a minimal coset representative
of Sp/Sh (i.e. all reduced words end in sp).
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Grassmannian elements

Definition

w e S, is Grassmannian if it is a minimal coset representative
of Sp/Sh (i.e. all reduced words end in sp).

{Fuw|w e 8,/Sn} form a basis of N¥) fork = n—1.

F,, indexed by Grassmannians are the dual k-Schur functions
of Lapointe-Morse &{) € A(K),
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Grassmannian elements

Definition

w e S, is Grassmannian if it is a minimal coset representative
of Sp/Sh (i.e. all reduced words end in sp).

{Fuw|w e 8,/Sn} form a basis of N¥) fork = n—1.

F,, indexed by Grassmannians are the dual k-Schur functions
of Lapointe-Morse &{) € A(K),

Definition

k-Schur functions are the dual basis in Ay of {6&") | X € Pk},
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Dual k-Schur functions

Bijection S,/S, — PX
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Dual k-Schur functions

Bijection S,/S, — PX

{891 X e P} basis of AW = C(m, | A € PX)
{(s{9 | xe Pk} basis of Ay = Chy | A € P¥)

<s£k), 6&“) = J), dual bases
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Reference

@ Jason Bandlow, Anne Schilling, Mike Zabrocki
The Murnaghan-Nakayama rule for k-Schur functions
preprint arXiv:1004.4886
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Characters

k-characters: o 0
Py = Z X\ S\

AEPK
1
(k) _ (k)
61/ Z Z) X\ Px
AePk

Dual version: ©
Py = Z )2>\7V 6)\
AePk
1
=3 Ll
2\ 7
AePk
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