Fibered K3 Surfaces using Sage

Andrey Novoseltsev

Department of Mathematical and Statistical Sciences
University of Alberta

March 11, 2009

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Lattice and Reflexive Polytopes

Let $N \simeq \mathbb{Z}^d$ be a lattice, $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, $M = \text{Hom}(N, \mathbb{Z})$.

Definition

A *lattice polytope* Δ is the convex hull in $N_{\mathbb{R}}$ of finitely many points $v_1, \ldots, v_n \in N$.

Lattice and Reflexive Polytopes

Let $N \simeq \mathbb{Z}^d$ be a lattice, $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, $M = \text{Hom}(N, \mathbb{Z})$.

Definition

A *lattice polytope* Δ is the convex hull in $N_{\mathbb{R}}$ of finitely many points $v_1, \ldots, v_n \in N$.

Definition

 Δ is *reflexive* if $\Delta^{\circ} = \{w : \langle w, v \rangle \geqslant -1 \ \forall v \in \Delta\} \subset M_{\mathbb{R}}$ is a lattice polytope in M.

By default we will be dealing with reflexive polytopes.

Lattice and Reflexive Polytopes

Let $N \simeq \mathbb{Z}^d$ be a lattice, $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$, $M = \text{Hom}(N, \mathbb{Z})$.

Definition

A *lattice polytope* Δ is the convex hull in $N_{\mathbb{R}}$ of finitely many points $v_1, \ldots, v_n \in N$.

Definition

 Δ is *reflexive* if $\Delta^{\circ} = \{w : \langle w, v \rangle \geqslant -1 \ \forall v \in \Delta\} \subset M_{\mathbb{R}}$ is a lattice polytope in M.

By default we will be dealing with reflexive polytopes.

- A necessary condition for Δ to be reflexive: the origin is the only interior lattice point (sufficient for d = 2).
- Vertices of Δ° are w_1, \ldots, w_m , where $\langle w_i, v \rangle + 1 = 0$ are equations of facets of Δ and w_i are normalized inner normals to them.
- $(\Delta^{\circ})^{\circ} = \Delta$.

Low-Dimensional Reflexive Polytopes

Up to the action of $GL(\mathbb{Z}^d)$, there are finitely many d-dimensional reflexive polytopes and there is a classification algorithm.

There are 16 reflexive polygons.

For d = 3: 4319. For d = 4: 473,800,776.

The image is taken from Poonen, B. & Rodriguez-Villegas, F., Lattice polygons and the number 12, Amer. Math. Monthly 107 (2000), no. 3, 238–250.

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Example:

• Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.
- We have $1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = 0$.

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.
- We have $1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = 0$.
- Introduce coordinates $z = (z_1, z_2, z_3)$ on \mathbb{C}^3 .

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.
- We have $1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = 0$.
- Introduce coordinates $z = (z_1, z_2, z_3)$ on \mathbb{C}^3 .
- Consider $\{z : z_i = 0 \ \forall i \in P\} = \{0\}.$

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.
- We have $1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = 0$.
- Introduce coordinates $z = (z_1, z_2, z_3)$ on \mathbb{C}^3 .
- Consider $\{z : z_i = 0 \ \forall i \in P\} = \{0\}.$
- Let \mathbb{C}^{\times} act on (z_1, z_2, z_3) via $(\lambda^1 z_1, \lambda^1 z_2, \lambda^1 z_3)$.

Example:

- Let $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (-1,-1)$ be vertices of Δ .
- The only set of vertices which is not contained in a single face of Δ is P = {1,2,3}.
- We have $1 \cdot v_1 + 1 \cdot v_2 + 1 \cdot v_3 = 0$.
- Introduce coordinates $z = (z_1, z_2, z_3)$ on \mathbb{C}^3 .
- Consider $\{z : z_i = 0 \ \forall i \in P\} = \{0\}.$
- Let \mathbb{C}^{\times} act on (z_1, z_2, z_3) via $(\lambda^1 z_1, \lambda^1 z_2, \lambda^1 z_3)$.

This defines a toric variety \mathbb{P}_{Δ} as $(\mathbb{C}^3\setminus\{0\})/\mathbb{C}^{\times}\simeq\mathbb{P}^2$.

In general:

• Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.

- Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.
- Let v_1, \ldots, v_n be the generators of 1-dimensional cones of Σ .

- Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.
- Let v_1, \ldots, v_n be the generators of 1-dimensional cones of Σ .
- Introduce a coordinate z_i for each v_i .

- Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.
- Let v_1, \ldots, v_n be the generators of 1-dimensional cones of Σ .
- Introduce a coordinate z_i for each v_i .
- The exceptional set is $S = \bigcup_P \{z \in \mathbb{C}^n : z_i = 0 \ \forall i \in P\}$ where P runs over all primitive collections sets of 1-dimensional cones not contained in a single cone of Σ , such that any proper subset is contained in a single cone.

- Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.
- Let v_1, \ldots, v_n be the generators of 1-dimensional cones of Σ .
- Introduce a coordinate z_i for each v_i .
- The exceptional set is $S = \bigcup_P \{z \in \mathbb{C}^n : z_i = 0 \ \forall i \in P\}$ where P runs over all primitive collections sets of 1-dimensional cones not contained in a single cone of Σ , such that any proper subset is contained in a single cone.
- ullet On $\mathbb{C}^n\setminus S$ we have the action of $G=\ker\left[(\mathbb{C}^\times)^n o\mathbb{C}^d
 ight]$ for

$$(\lambda_1,\ldots,\lambda_n)\mapsto \left(\prod_{i=1}^n\lambda_i^{(v_i)_1},\ldots,\prod_{i=1}^n\lambda_i^{(v_i)_d}\right).$$

In general:

- Let Σ be the fan spanned by faces of (a triangulation of) $\partial \Delta$.
- Let v_1, \ldots, v_n be the generators of 1-dimensional cones of Σ .
- Introduce a coordinate z_i for each v_i .
- The exceptional set is $S = \bigcup_P \{z \in \mathbb{C}^n : z_i = 0 \ \forall i \in P\}$ where P runs over all primitive collections sets of 1-dimensional cones not contained in a single cone of Σ , such that any proper subset is contained in a single cone.
- ullet On $\mathbb{C}^n\setminus S$ we have the action of $G=\ker\left[(\mathbb{C}^\times)^n o\mathbb{C}^d
 ight]$ for

$$(\lambda_1,\ldots,\lambda_n)\mapsto \left(\prod_{i=1}^n\lambda_i^{(v_i)_1},\ldots,\prod_{i=1}^n\lambda_i^{(v_i)_d}\right).$$

• This defines the toric variety \mathbb{P}_{Σ} as $(\mathbb{C}^n \setminus S)/G$, which is a good geometric quotient if Σ is simplicial (e.g. if Σ corresponds to a maximal lattice triangulation of $\partial \Delta$).

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Anticanonical Hypersurfaces

• Batyrev's mirror pair of Calabi-Yau anticanonical hypersurfaces $X \subset \mathbb{P}_{\Sigma(\Delta)}$ and $X^{\circ} \subset \mathbb{P}_{\Sigma(\Delta^{\circ})}$ is given by the equation

$$\sum_{w \in \Delta^{\circ} \cap M} a_w \prod_{i=1}^{n} z_i^{\langle w, v_i \rangle + 1} = 0$$

and its "polar" (may omit interior points of facets of Δ°).

Anticanonical Hypersurfaces

• Batyrev's mirror pair of Calabi-Yau anticanonical hypersurfaces $X \subset \mathbb{P}_{\Sigma(\Delta)}$ and $X^{\circ} \subset \mathbb{P}_{\Sigma(\Delta^{\circ})}$ is given by the equation

$$\sum_{\textit{w} \in \Delta^{\circ} \cap \textit{M}} \textit{a}_{\textit{w}} \prod_{i=1}^{n} z_{i}^{\langle \textit{w},\textit{v}_{i} \rangle + 1} = 0$$

and its "polar" (may omit interior points of facets of Δ°).

Q: What are the Hodge numbers of X and X°?

Anticanonical Hypersurfaces

• Batyrev's mirror pair of Calabi-Yau anticanonical hypersurfaces $X \subset \mathbb{P}_{\Sigma(\Delta)}$ and $X^{\circ} \subset \mathbb{P}_{\Sigma(\Delta^{\circ})}$ is given by the equation

$$\sum_{w \in \Delta^{\circ} \cap M} a_w \prod_{i=1}^{n} z_i^{\langle w, v_i \rangle + 1} = 0$$

and its "polar" (may omit interior points of facets of Δ°).

- Q: What are the Hodge numbers of X and X°?
- A: For $d \ge 4$ they can be computed "in terms of Δ :"

$$h^{1,1}(X)=\ell(\Delta)-1-d-\sum_{\Gamma}\ell^*(\Gamma)+\sum_{F}\ell^*(F)\ell^*(F^*),$$

where $\ell(\Delta) = |\Delta \cap N|$, Γ runs over codimension-1 faces of Δ , $\ell^*(\Gamma) = |\inf \Gamma \cap N|$, F runs over codimension-2 faces of Δ , and F^* is the dual to F face of Δ° .

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Things like

- ambient spaces
- equations of interesting (i.e. Calabi-Yau) hypersurfaces
- Hodge numbers

can be dealt with explicitly using polytope data — facial structure and lattice points on faces. Perfect for computer experimentation!

Things like

- ambient spaces
- equations of interesting (i.e. Calabi-Yau) hypersurfaces
- Hodge numbers

can be dealt with explicitly using polytope data — facial structure and lattice points on faces. Perfect for computer experimentation! Tools:

 PALP — Package for Analyzing Lattice Polytopes, a small package of C programs designed to work using pipes.

Things like

- ambient spaces
- equations of interesting (i.e. Calabi-Yau) hypersurfaces
- Hodge numbers

can be dealt with explicitly using polytope data — facial structure and lattice points on faces. Perfect for computer experimentation!

Tools:

- PALP Package for Analyzing Lattice Polytopes, a small package of C programs designed to work using pipes.
- Sage a big package of everything, including PALP.

Things like

- ambient spaces
- equations of interesting (i.e. Calabi-Yau) hypersurfaces
- Hodge numbers

can be dealt with explicitly using polytope data — facial structure and lattice points on faces. Perfect for computer experimentation!

Tools:

- PALP Package for Analyzing Lattice Polytopes, a small package of C programs designed to work using pipes.
- Sage a big package of everything, including PALP.
- lattice_polytope a module in Sage, uses PALP for some internal operations and gives direct access to it as well.

Things like

- ambient spaces
- equations of interesting (i.e. Calabi-Yau) hypersurfaces
- Hodge numbers

can be dealt with explicitly using polytope data — facial structure and lattice points on faces. Perfect for computer experimentation!

Tools:

- PALP Package for Analyzing Lattice Polytopes, a small package of C programs designed to work using pipes.
- Sage a big package of everything, including PALP.
- lattice_polytope a module in Sage, uses PALP for some internal operations and gives direct access to it as well.
- Some extra code, which may be added to Sage once it is clean, if there will be general interest.

Sample Projects

The above tools were used for a number of projects including

 Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)

Sample Projects

The above tools were used for a number of projects including

- Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)
- Search for "nice" compactifications of a given Calabi-Yau variety.

Sample Projects

The above tools were used for a number of projects including

- Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)
- Search for "nice" compactifications of a given Calabi-Yau variety.
- Experiments and verification of results on Hodge numbers of complete intersections.

Sample Projects

The above tools were used for a number of projects including

- Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)
- Search for "nice" compactifications of a given Calabi-Yau variety.
- Experiments and verification of results on Hodge numbers of complete intersections.
- Computation of the Picard lattice of K3 surfaces.

Sample Projects

The above tools were used for a number of projects including

- Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)
- Search for "nice" compactifications of a given Calabi-Yau variety.
- Experiments and verification of results on Hodge numbers of complete intersections.
- Computation of the Picard lattice of K3 surfaces.
- Exploration of properties of elliptically fibered K3 surfaces.

Sample Projects

The above tools were used for a number of projects including

- Search for reflexive polytopes with facial structure of a particular form (for "Algebraic K-theory of toric hypersurfaces" by C.F. Doran & M. Kerr)
- Search for "nice" compactifications of a given Calabi-Yau variety.
- Experiments and verification of results on Hodge numbers of complete intersections.
- Computation of the Picard lattice of K3 surfaces.
- Exploration of properties of elliptically fibered K3 surfaces.

Let's look at elliptic fibrations closer.

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

(Following works of E. Perevalov & H. Skarke, F. Rohsiepe, and others)

• Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.

- Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.
- Morphisms of toric varieties correspond to morphisms of related lattices.

- Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.
- Morphisms of toric varieties correspond to morphisms of related lattices.
- We may look for a hyperplane through the origin which intersects all edges of Δ in integral points (or for a projection of Δ ° in some direction onto a plane).

- Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.
- Morphisms of toric varieties correspond to morphisms of related lattices.
- We may look for a hyperplane through the origin which intersects all edges of Δ in integral points (or for a projection of Δ° in some direction onto a plane).
- If the intersection (resp. projection) is a reflexive polygon, then we get a fibration of $\mathbb{P}_{\Sigma(\Delta)}$ which induces an elliptic fibration of X.

- Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.
- Morphisms of toric varieties correspond to morphisms of related lattices.
- We may look for a hyperplane through the origin which intersects all edges of Δ in integral points (or for a projection of Δ ° in some direction onto a plane).
- If the intersection (resp. projection) is a reflexive polygon, then we get a fibration of $\mathbb{P}_{\Sigma(\Delta)}$ which induces an elliptic fibration of X.
- Moreover, exceptional fibers over zero and infinity can be directly seen from the edges of Δ !

- Elliptic fibrations of a K3 surface $X \subset \mathbb{P}_{\Sigma(\Delta)}$ (where dim $\Delta = 3$) can be obtained from fibrations of $\mathbb{P}_{\Sigma(\Delta)}$ itself.
- Morphisms of toric varieties correspond to morphisms of related lattices.
- We may look for a hyperplane through the origin which intersects all edges of Δ in integral points (or for a projection of Δ ° in some direction onto a plane).
- If the intersection (resp. projection) is a reflexive polygon, then we get a fibration of $\mathbb{P}_{\Sigma(\Delta)}$ which induces an elliptic fibration of X.
- Moreover, exceptional fibers over zero and infinity can be directly seen from the edges of Δ !
- With some care the method works for higher dimensions.

• Let $m_f \in M$ be a primitive vector specifying the slicing hyperplane in N or the direction of projection in M.

- Let $m_f \in M$ be a primitive vector specifying the slicing hyperplane in N or the direction of projection in M.
- The projection map $\mathbb{P}_{\Sigma(\Delta)} \to \mathbb{P}^1$ is given by

$$\left(\prod_{\langle m_f, v_i \rangle > 0} z_i^{\langle m_f, v_i \rangle} : \prod_{\langle m_f, v_i \rangle < 0} z_i^{-\langle m_f, v_i \rangle}\right) \in \mathbb{P}^1.$$

- Let m_f ∈ M be a primitive vector specifying the slicing hyperplane in N or the direction of projection in M.
- The projection map $\mathbb{P}_{\Sigma(\Delta)} \to \mathbb{P}^1$ is given by

$$\left(\prod_{\langle m_f, v_i \rangle > 0} z_i^{\langle m_f, v_i \rangle} : \prod_{\langle m_f, v_i \rangle < 0} z_i^{-\langle m_f, v_i \rangle}\right) \in \mathbb{P}^1.$$

- In a chart we may set all but one of the involved z_i 's to 1.
- The remaining one (or its power) serves as an affine coordinate on the base.

- Let $m_f \in M$ be a primitive vector specifying the slicing hyperplane in N or the direction of projection in M.
- The projection map $\mathbb{P}_{\Sigma(\Delta)} \to \mathbb{P}^1$ is given by

$$\left(\prod_{\langle m_f, v_i \rangle > 0} z_i^{\langle m_f, v_i \rangle} : \prod_{\langle m_f, v_i \rangle < 0} z_i^{-\langle m_f, v_i \rangle}\right) \in \mathbb{P}^1.$$

- In a chart we may set all but one of the involved z_i's to 1.
- The remaining one (or its power) serves as an affine coordinate on the base.
- The divisor class of the fiber is given by

$$\sum_{\left\langle m_f, v_i \right\rangle > 0} \! \left\langle m_f, v_i \right\rangle \left\{ z_i = 0 \right\} \sim - \sum_{\left\langle m_f, v_i \right\rangle < 0} \! \left\langle m_f, v_i \right\rangle \left\{ z_i = 0 \right\}.$$

- Let $m_f \in M$ be a primitive vector specifying the slicing hyperplane in N or the direction of projection in M.
- The projection map $\mathbb{P}_{\Sigma(\Delta)} \to \mathbb{P}^1$ is given by

$$\left(\prod_{\langle m_f, v_i \rangle > 0} z_i^{\langle m_f, v_i \rangle} : \prod_{\langle m_f, v_i \rangle < 0} z_i^{-\langle m_f, v_i \rangle}\right) \in \mathbb{P}^1.$$

- In a chart we may set all but one of the involved z_i 's to 1.
- The remaining one (or its power) serves as an affine coordinate on the base.
- The divisor class of the fiber is given by

$$\sum_{\langle \textit{m}_{\textit{f}},\textit{v}_{\textit{i}}\rangle>0} \langle \textit{m}_{\textit{f}},\textit{v}_{\textit{i}}\rangle \left\{ \textit{z}_{\textit{i}}=0 \right\} \sim -\sum_{\langle \textit{m}_{\textit{f}},\textit{v}_{\textit{i}}\rangle<0} \langle \textit{m}_{\textit{f}},\textit{v}_{\textit{i}}\rangle \left\{ \textit{z}_{\textit{i}}=0 \right\}.$$

• Let's see it in action in 3D using Sage!

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Slicing the Cube

Slicing the Cube

Slice it:

Remove "touching" parts:

Slicing the Cube

Slice it:

Remove "touching" parts:

Graphs on top and bottom are extended Dynkin diagrams corresponding to the exceptional fibers over zero and infinity of the induced fibration of X!

Slicing the Cube — not by hands!!!

Using Sage, after some preparation we get

```
sage: ef.show()
A fibration of:
 A polytope polar to An octahedron: 3-dimensional, 8 vertices.
 Corresponding to:
 Equation of a hypersurface:
 a_3 z_0^2 z_2^2 z_4^2 z_6^2 z_8^2 z_9^2 + a_4 z_0^2 z_1^2 z_4^2 z_5^2 z_8^2 z_{10}^2 + a_2 z_0^2 z_1^2 z_2^2 z_3^2 z_8 z_9 z_{10} z_{11} +
 a_{6}z_{0}z_{1}z_{2}z_{3}z_{4}z_{5}z_{6}z_{7}z_{8}z_{9}z_{10}z_{11} + a_{5}z_{4}^{2}z_{5}^{2}z_{6}^{2}z_{7}^{2}z_{8}z_{9}z_{10}z_{11} + a_{1}z_{5}^{2}z_{3}^{2}z_{6}^{2}z_{7}^{2}z_{6}^{2}z_{11}^{2} + a_{0}z_{1}^{2}z_{5}^{2}z_{6}^{2}z_{7}^{2}z_{10}z_{11}^{2} + a_{1}z_{2}^{2}z_{10}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z_{11}^{2}z
 Fiber over (t^{(1)},1):
 (a_3t^2)z_8^2z_9^2 + (a_4t^2)z_8^2z_{10}^2 + (a_2t^2 + a_6t + a_5)z_8z_9z_{10}z_{11} + a_1z_9^2z_{11}^2 + a_0z_{10}^2z_{11}^2
 Top: ExtA7.
 Bottom: ExtA7.
F 0: ('I', 8).
 F infinity: ('I', 8).
```

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Another Example

Start with:

Fibration diagram:

Another Example

Start with:

Fibration diagram:

Not as satisfying as before — graphs of "top" and "bottom" are not extended Dynkin diagrams.

• Up to linear equivalence, all divisors on $\mathbb{P}_{\Sigma(\Delta)}$ are toric-invariant, i.e. correspond to 1-dimensional cones of $\Sigma(\Delta)$.

- Up to linear equivalence, all divisors on $\mathbb{P}_{\Sigma(\Delta)}$ are toric-invariant, i.e. correspond to 1-dimensional cones of $\Sigma(\Delta)$.
- Intersections of these divisors with *X* give rise to divisors on *X*.

- Up to linear equivalence, all divisors on $\mathbb{P}_{\Sigma(\Delta)}$ are toric-invariant, i.e. correspond to 1-dimensional cones of $\Sigma(\Delta)$.
- Intersections of these divisors with *X* give rise to divisors on *X*.
- Some of them may split. Namely, interior points of an edge E of Δ "split" into $\ell^*(E^*) + 1$ components and the Picard rank of X is, generically,

$$p(X) = \ell(\Delta) - 1 - 3 - \sum_{F, \text{ facets of } \Delta} \ell^*(F) + \sum_{E, \text{ edges of } \Delta} \ell^*(E) \ell^*(E^*).$$

(Same expression as for $h^{1,1}$ in higher dimensions.)

- Up to linear equivalence, all divisors on $\mathbb{P}_{\Sigma(\Delta)}$ are toric-invariant, i.e. correspond to 1-dimensional cones of $\Sigma(\Delta)$.
- Intersections of these divisors with X give rise to divisors on X.
- Some of them may split. Namely, interior points of an edge E of Δ "split" into $\ell^*(E^*) + 1$ components and the Picard rank of X is, generically,

$$p(X) = \ell(\Delta) - 1 - 3 - \sum_{F, \text{ facets of } \Delta} \ell^*(F) + \sum_{E, \text{ edges of } \Delta} \ell^*(E) \ell^*(E^*).$$

(Same expression as for $h^{1,1}$ in higher dimensions.)

• After this "splitting" all points on graphs of the "top" and "bottom" correspond to divisors with self-intersection -2. "Edges split" as well and each line represents an intersection of divisors (without multiplicities except for the case o===0).

Another Example — Splitting

Another Example — Splitting

Now we do get an extended Dynkin diagram, as expected for an exceptional fiber!

Splitting: Details

Intersection of a generic K3 surface and a torus-invariant divisor $\{z_j=0\}$, where v_j is an interior point of an edge E gives

$$\sum_{w\in\Delta^{\circ}\cap M}a_{w}\prod_{i=1}^{n}z_{i}^{\langle w,v_{i}\rangle+1}=\sum_{w\in E^{*}\cap M}a_{w}\prod_{i=1,\dots,\hat{j},\dots n}z_{i}^{\langle w,v_{i}\rangle+1},$$

since $\langle w, v_j \rangle = -1$ precisely for $w \in E^*$.

Splitting: Details

Intersection of a generic K3 surface and a torus-invariant divisor $\{z_j=0\}$, where v_j is an interior point of an edge E gives

$$\sum_{w\in\Delta^{\circ}\cap M}a_{w}\prod_{i=1}^{n}z_{i}^{\langle w,v_{i}\rangle+1}=\sum_{w\in E^{*}\cap M}a_{w}\prod_{i=1,\dots,\hat{j},\dots n}z_{i}^{\langle w,v_{i}\rangle+1},$$

since $\langle w, v_j \rangle = -1$ precisely for $w \in E^*$. Let w_0, \dots, w_s be consecutive points along E^* . Since $w_k = w_0 + k(w_1 - w_0)$, we can rewrite the above as

$$\prod_{i=1}^{n} z_{i}^{\langle w_{0}, v_{i} \rangle + 1} \sum_{k=0}^{s} a_{w_{k}} \left(\prod_{t=1}^{n} z_{t}^{\langle w_{1} - w_{0}, v_{t} \rangle} \right)^{k}$$

and the intersection splits into $s = \ell^*(E^*) + 1$ components.

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

 Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.
- Polynomial rings: working in homogeneous coordinates and charts, factoring, fraction fields, finding roots with given precision.

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.
- Polynomial rings: working in homogeneous coordinates and charts, factoring, fraction fields, finding roots with given precision.
- Graphs: "tops" and "bottoms," splitting, representing Eulerian posets (currently Sage some built-in support for posets).

Used Features of Sage

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.
- Polynomial rings: working in homogeneous coordinates and charts, factoring, fraction fields, finding roots with given precision.
- Graphs: "tops" and "bottoms," splitting, representing Eulerian posets (currently Sage some built-in support for posets).
- 3D-graphics.

Used Features of Sage

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.
- Polynomial rings: working in homogeneous coordinates and charts, factoring, fraction fields, finding roots with given precision.
- Graphs: "tops" and "bottoms," splitting, representing Eulerian posets (currently Sage some built-in support for posets).
- 3D-graphics.
- Python: making everything work together.

Used Features of Sage

- Interfaces with other programs: integration with PALP, using MAGMA and Maple for (temporarily) missing features of Sage.
- Linear algebra.
- Polynomial rings: working in homogeneous coordinates and charts, factoring, fraction fields, finding roots with given precision.
- Graphs: "tops" and "bottoms," splitting, representing Eulerian posets (currently Sage some built-in support for posets).
- 3D-graphics.
- Python: making everything work together.
- Groups: working with discriminant groups of lattices.

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

Interfaces with Other Software

 It was quite easy to make an interface to PALP for computing convex hulls, facial structure, polars, and nef partitions.

Interfaces with Other Software

- It was quite easy to make an interface to PALP for computing convex hulls, facial structure, polars, and nef partitions.
- Interfaces to commercial software are built-in (but you have to have these programs, of course), if a particular function is not supported in the sense of returning a Sage object, at least it is possible to get a string output for any command.

Interfaces with Other Software

- It was quite easy to make an interface to PALP for computing convex hulls, facial structure, polars, and nef partitions.
- Interfaces to commercial software are built-in (but you have to have these programs, of course), if a particular function is not supported in the sense of returning a Sage object, at least it is possible to get a string output for any command.
- This is convenient to get fast access to features that are not implemented in Sage and wait for someone to implement it.
- E.g. MAGMA was used for graph classification, but now there is no need for this, thanks to Robert Miller!

$$\mathbb{Q}[a_1,\ldots,a_m][z_1,\ldots,z_n].$$

$$\mathbb{Q}[a_1,\ldots,a_m][z_1,\ldots,z_n].$$

- This allows
 - precise arithmetics,
 - convenient monomial manipulation,
 - gathering of monomials when passing to the fiber,
 - even pretty printing (as well as LaTeX code)!

$$\mathbb{Q}[a_1,\ldots,a_m][z_1,\ldots,z_n].$$

- This allows
 - precise arithmetics,
 - convenient monomial manipulation,
 - gathering of monomials when passing to the fiber,
 - even pretty printing (as well as LaTeX code)!
- For classifying all exceptional fibers numerically it was important to find roots with specified precision to make sure that multiple roots are determined as multiple.

$$\mathbb{Q}[a_1,\ldots,a_m][z_1,\ldots,z_n].$$

- This allows
 - precise arithmetics,
 - convenient monomial manipulation,
 - gathering of monomials when passing to the fiber,
 - even pretty printing (as well as LaTeX code)!
- For classifying all exceptional fibers numerically it was important to find roots with specified precision to make sure that multiple roots are determined as multiple.
- ullet For one of the projects it was important to have fast arithmetics for polynomials over $\mathbb Z$ and Sage is the fastest for the moment.

3D-Graphics

• Sage (via Jmol) allows working with interactive 3D graphs.

3D-Graphics

- Sage (via Jmol) allows working with interactive 3D graphs.
- It is really easy to create your own 3D objects!

3D-Graphics

- Sage (via Jmol) allows working with interactive 3D graphs.
- It is really easy to create your own 3D objects!

```
def top3d(self.
        edge thickness=3, edge color=(0.5, 0.5, 0.5),
        point size=10, point color=(0,0,1),
        label_color=(0,0,0), label_shift=1.1):
    ~ II II II
    Return the 3d plot of the top edge diagram.
    q = self. s.top
    points = self.polytope().points().columns(copy=False)
    plot = None
    for v in q.vertices():
        pt = points[v]
        plot += point3d([pt], size=point_size, rgbcolor=point_color)
        plot += text3d(str(v), label shift*pt, rgbcolor=label color)
    for e in a.edges():
        plot += line3d([points[e[0]], points[e[1]]],
                    thickness=edge thickness, rabcolor=edge color)
    return plot
```

Outline

- Reflexive Polytopes in Toric Geometry
 - Reflexive Polytopes
 - Homogeneous Coordinates
 - Calabi-Yau Hypersurfaces
 - Tools and Projects
- Elliptically Fibered K3 Surfaces
 - Fibrations from Polytopes
 - Slicing the Cube
 - Splitting
- Using Sage
 - Summary
 - Close Look
 - Personal Perspective on Sage

• Functionality is comparable to commercial software packages.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.
 - Asked for easy breaking/combining of notebook cells

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.
 - Asked for easy breaking/combining of notebook cells got it in the next release.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.
 - Asked for easy breaking/combining of notebook cells got it in the next release.
- Python is more convenient for writing code than exclusive languages of other programs.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.
 - Asked for easy breaking/combining of notebook cells got it in the next release.
- Python is more convenient for writing code than exclusive languages of other programs.
- Sage server/notebook is a really convenient feature for working on fast computers from slow laptops or random machines.

- Functionality is comparable to commercial software packages.
- It has some bugs, but others have them as well (for a fee).
- Sage community is very responsive and active.
 - You can get answers in a few minutes even in the night.
 - Reported zero vector in a basis patch next day.
 - Asked for easy breaking/combining of notebook cells got it in the next release.
- Python is more convenient for writing code than exclusive languages of other programs.
- Sage server/notebook is a really convenient feature for working on fast computers from slow laptops or random machines.
- If you do want to have a personal installation, you download the archive, follow simple instructions, and it works. If you have problems, it is clear where to get help.
- From personal experience, this can be more complicated (thus annoying) for much simpler free software.