
Computing with triangular families of

polynomials, an overview

Éric Schost, ORCCA, UWO

Triangular representations

Triangular set: n polynomials in n unknowns over a field K, of the form

T

∣∣∣∣∣∣∣∣∣∣∣∣

Tn(X1, . . . , Xn)
...

T2(X1, X2)

T1(X1),

with the conditions

• Ti is monic in Xi,

• (optional) the ideal 〈T〉 generates a separable extension of K.

The system has no multiple root.

Note:

• particular case of a zero-dimensional Gröbner basis.

• we can hide parameters in the base field.

Representation of algebraic sets

Example: the family ∣∣∣∣∣∣ T2 = X2
2 + (· · ·)X2 + (· · ·)

T1 = X3
1 + · · ·

defines an equiprojectable variety (Aubry-Valibouze) of the form

X1

X2

Same number of points
in each fiber for the projection
on the X1 axis.

Some examples

Using symmetries

Let S(X) be a self-reciprocal polynomial of degree d, with S(0) 6= 0:

S(X) = XdS

(
1
X

)
.

Example: 1X6−5X5 + 6X4−9X3 + 6X2−5X + 1.

Suppose we want to factor S. In order to make the factorization easier, we
introduce Y = X + 1

X . Then,

1. consider the equations

 Y −
(
X + 1

X

)
X6 − 5X5 + 6X4 − 9X3 + 6X2 − 5X + 1

Using symmetries

Let S(X) be a self-reciprocal polynomial of degree d, with S(0) 6= 0:

S(X) = XdS

(
1
X

)
.

Example: 1X6−5X5 + 6X4−9X3 + 6X2−5X + 1.

Suppose we want to factor S. In order to make the factorization easier, we
introduce Y = X + 1

X . Then,

1. consider the equations

 Y −
(
X + 1

X

)
X6 − 5X5 + 6X4 − 9X3 + 6X2 − 5X + 1

Using symmetries

2. change the order of X and Y X2 − Y X + 1

T : Y 3 − 5Y 2 + 3Y + 1

3. factor T (or find a single factor)

 X2 − Y X + 1

Y 2 − 4Y − 1

Using symmetries

2. change the order of X and Y X2 − Y X + 1

T : Y 3 − 5Y 2 + 3Y + 1

3. factor T (or find a single factor)

 X2 − Y X + 1

Y 2 − 4Y − 1

Using symmetries

4. recover the factors of S by changing back the order Y −
(
X + 1

X

)
X4 − 4X3 +X2 − 4X + 1.

Motivation: From a problem in cryptology (inspired by the SEA algorithm, with
P. Gaudry):

• One has to factor a polynomial S ∈ Fp[X] of high degree
(' 10000, 100000, . . .), with p ' 2160.

• For help, one knows a polynomial R(X) that plays the role of X + 1
X .

Using symmetries

4. recover the factors of S by changing back the order Y −
(
X + 1

X

)
X4 − 4X3 +X2 − 4X + 1.

Motivation: Point-counting in genus 2 (with P. Gaudry):

• one has to factor a polynomial over a large finite field;

• for help, one knows a polynomial R(X) that plays the role of X + 1
X .

Power series multiplication

The monomial ideal

T =

∣∣∣∣∣∣∣∣∣∣∣∣

xdn
n

...

xd2
2

xd1
1

is triangular.

There seems to be no straightforward algorithm to multiply modulo 〈T〉
efficiently.

Polynomial multiplication

Reductions:

• to multiply polynomials of degree d, enough to multiply series mod Xd;

• we can take d = 2k.

From uni- to multivariate (with d = 8 = 23)

• write X = X0, and introduce X1, X2;

• use the equality between ideals∣∣∣∣∣∣∣∣
X2 −X4

0

X1 −X2
0

X8
0

=

∣∣∣∣∣∣∣∣
X2

0 −X1

X2
1 −X2

X2
2

• change of basis is free via base-2 decomposition of indices.

Artin-Schreier (characteristic 2)

To handle degree-2 extensions

• of the form F[X]/〈X2 −X − α〉,

• where char(F)= 2.

Algorithms such as Couveignes’ generate towers

T =

∣∣∣∣∣∣∣∣∣∣∣∣

X2
n −Xn − αn(X1, . . . , Xn−1)

...

X2
2 −X2 − α2(X1)

X2
1 −X1 − α1

and we have to compute modulo such T’s.

Implicitization

The field K may be a rational function field L(Y1, . . . , Yr): leads to a
representation of the generic solutions of systems of positive dimension.

Example:

x − 1
3
pq2 + q2 + q + p2q − 6pq + p+ p2

pq
,

y − −1
9

(q − 1 + p)(−q − 1 + p)(−q + 1 + p)
pq

,

z − 1
36

(p+ 1)2(q + 1)2(q + 2q2 + q3 + p+ pq3 + 2p2 − p2q2 + p3 + qp3)2

p2q2(p+ q + 1)4

is triangular in L(p, q)[x, y, z], and represents the “generic points” of a variety
defined over L by equations in L[p, q, x, y, z] (provided by I. Kogan.)

Implicitization

The field K may be a rational function field L(Y1, . . . , Yr): leads to a
representation of the generic solutions of systems of positive dimension.

Example:

q − c0(x, y, z, p)
(p3)2

(p)4

p2 + b1(x, y, z)p+ b0(x, y, z)
(p3)2

(p)4

x12 + a11(y, z)x11 + a10(y, z)x10 + · · · (p
3)2

(p)4

is triangular in L(y, z)[x, p, q], and represents the “generic points” of the same
variety.

Our questions

Previous work

1932 Ritt

1978 Wu

Characteristic sets (Chou, Gao, Wang, Hubert, . . .)

1987 Duval

Constructible sets (Gomez-Diaz, Dellière, . . .)

1991 Lazard

Dimension zero

1992 Lazard

1991 Kalkbrenner

Regular chains (Moreno Maza, Aubry, . . .)

Usually complex algorithms, especially in positive dimension.

Where the question stands

Already in dimension zero. . .

Compared to Gröbner bases?

• harder to compute than degree bases?

• faster arithmetic?

Compared to primitive element representations?

• more structure

• slower arithmetic?

Polynomial multiplication

Polynomial multiplication is a basic problem, with a variety of answers.

(F,G) ∈ K[x] 7→ FG.

� naive product, Karatsuba, Toom-Cook, FFT’s,

� cost written M(d)

Matrix multiplication

Another fundamental question is matrix multiplication:

(A,B) ∈Mn(K) 7→ AB.

An exponent of matrix multiplication is an ω such that matrix multiplication
can be done in O(nω).

Known results

Using

• divide-and-conquer,

• Newton-Hensel lifting,

• baby steps / giant steps, . . .

algorithms can be designed on top of polynomial and matrix multiplication, and
their complexity can be expressed in terms of M and ω.

Goal: develop such a family of algorithms for triangular representations.

with Dahan, Jin, Li, Moreno Maza, Pascal, Wu, Xie

How:

• understand the hierarchy of problems;

• at the software level, concentrate the effort on a few key subroutines.

Dimension zero

Setting

Input data:

• T is a triangular set in K[X] = K[X1, . . . , Xn];

• the natural measure of complexity is δT = d1 · · · dn, with di = deg(Ti, Xi).

Ideal target:

• algorithms for basic operations with T that would have cost O (̃δT).

If this is too difficult. . .

• algorithms of complexity O (̃F(n)δT) or O (̃F(n)δkT).

We use O (̃) to denote the omission of logarithmic factors.

Multiplication

Input: A and B in K[X], reduced modulo 〈T〉.

Output: AB modulo 〈T〉.

Cost: O (̃4nδT).

Algorithm: (A,B) 7→ C = AB ∈ K[X] 7→ C mod 〈T〉.

The reduction modulo 〈T〉 extends the algorithm for univariate Euclidean
division (Cook, Sieveking, Kung).

• a direct recursive approach leads to 3nM(d1) · · ·M(dn) ' O (̃(3k)nδT).

• we use a mixed dense / recursive algorithm.

• practical algorithm.

What’s missing: getting rid of the exponential factor 4n.

Inversion

Input: A ∈ K[X], reduced modulo 〈T〉.

Output: A−1 modulo 〈T〉 (supposing it exists), error otherwise.

Cost: O (̃KnδT).

Algorithm: a recursive Euclidean algorithm.

• if 〈T〉 is maximal, no big problem (theoretically).

• else, leading terms can be zero-divisors; this induces splittings and requires
an effective multiple reduction:

K[X]/〈T〉 → K[X]/〈U1〉 × · · · ×K[X]/〈Um〉.

• complex recursive algorithm, using fast algorithms for GCD, modular
reduction, coprime factorization.

What’s missing: a theoretically / practically good algorithm.

Change of order, dimension zero

Input: T and a target order on the variables.

Output: A triangular set T′ for the target order such that 〈T〉 = 〈T′〉 (if it
exists).

Cost in two variables:

• O(δ(ω+1)/2
T), where ω is the exponent of linear algebra.

• O (̃δT) bit-cost over finite fields.

Algorithm.

• Leverrier-like algorithm, using trace computations (Rouillier, Diaz

Toca-Gonzalez Vega),

• fast modular composition (Brent-Kung),

• over finite fields, Kedlaya-Umans.

What’s missing: an algorithm in O (̃KnδT).

Positive dimension

Setting

Basic object:

• V ⊂ Kn
is a variety of dimension r and degree ∆, defined over K.

• V irreducible (for simplicity).

Representations of V :

• Given an order on X, there exists a partition of X into free variables Y and
algebraic variables Z, and T in K(Y)[Z], such that

? T is a triangular set for the induced order on Z,

? 〈T〉 = I(V) ·K(Y)[Z].

• T describes the generic points of V .

Target:

• algorithms of complexity polynomial in ∆, when possible.

Degree bounds

Question: what are the degrees that can appear in T?

Answer: the degrees in the algebraic variables are ≤ ∆; the degrees in the free
variables are ≤ 2∆2.

Remark: instead of T, one can use U, with

Ui =
∂T1

∂X1
· · · ∂Ti−1

∂Xi−1
Ti mod 〈T1, . . . , Ti−1〉.

Then all degrees in Ui are ≤ 2∆.

What’s missing: bit-size, when K = Q.

Lifting techniques

Input:

• a system F = (F1, . . . , Fn−r) such that V ⊂ V (F) and V 6⊂ V (Jac(F,Z)).

• the specialization T(0,Z) (assumed to be lucky).

Output: T.

Algorithm: compute expansions of T modulo 〈Y〉2i

, and recover the coefficients
in K(Y) by multivariate rational function reconstruction.

Complexity: combines the costs of most previous subroutines, not polynomial
in ∆.

Remark: also works to lift Z/pZ→ Q.

Change of order, positive dimension

Input: A triangular set T in K(Y)[Z] and a target order on X.

Output: The specialization T′(0,Z′).

Algorithm:

• finding the free / algebraic variables for the target order;

• going from T(0,Z) to T′(0,Z′) changing one variable at the time.

Complexity: polynomial in ∆. Combines the costs of most previous
subroutines.

Summary

As of now: the previous algorithms are sufficient to treat several applications.

• implementations of low-level algorithms in C.

• lifting and change of order in positive dimension available in Maple
(RegularChains: Lemaire, Moreno Maza, Xie).

Ongoing work: solving general systems, by incremental intersection.

• previous algorithms

• (sub)resultant techniques

Complexity of multiplication

In one variable

Quotient and remainder: Euclidean division

T,B 7→ B mod T,

with deg T = d and degB ≤ 2d costs 2M(d) +O(d) base ring operations,
assuming precomputations (Cook, Sieveking, Kung).

The trick: power series division at ∞.

Modular multiplication: 3M(d) +O(d)

In several variables

Let now T be a triangular set of multi-degree (d1, . . . , dn). Plain recursive:

3nM(d1) · · ·M(dn).

For M(d) = k d log(d) log log(d), this is essentially (3k)nδT.

Remark: this is polynomial in δT (because one can assume all di ≥ 2, so
δT ≥ 2n).

All purpose algorithm: O (̃4nδT).

• mixed dense / recursive algorithm, relying on polynomial multiplication.

• we start by expanding the product and reducing it.

• so no way to get better than 2nδT.

Practical aspects

The algorithm was implemented by Xin Li:

• C code.

• univariate FFT multiplication and Kronecker substitution.

 60 120 180 240 300 0 20 40 60 80 100 120
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Time
Magma

Our code

d1 d2
d3

Time

Beating the 4n factor

Interpolation techniques (cf. FFT multiplication, Pan).

• When all Ti factor into linear terms, V (T) is a union of K-rational points
that form an equiprojectable set.

• Fast univariate evaluation and interpolation has complexity O(M(d) log(d)).

• Using this, one can multiply polynomials modulo 〈T〉 in time

O
(
δT
∑ M(di) log(di)

di

)
⊂ O (̃δT)

Homotopy techniques

When the roots are not in K:

• set up a homotopy with a system that splits

Vi = εUi + (1− ε)Ti

• AB mod 〈T〉 = subs(ε = 1, AB mod 〈V〉).

• the Vi have roots in K[[ε]] (Hensel lemma).

Using the evaluation / interpolation algorithm over K[[ε]].

• complexity O (̃δTrT)

• rT is the needed precision in ε

Homotopy techniques

Nice monomial supports induce low precisions.

Univariate polynomials

• Ti = Ti(Xi)

• rT = O(
∑
di)

Polynomial multiplication

• Ti = X2
i −Xi−1

• rT = O(n) =⇒ M(d) = O(d log(d)2 log(log(d))2 · · ·)

Artin-Schreier (over F2)

• Ti = X2
i +Xi + αi(X1, . . . , Xi−1)

• rT = O(1.5n).

