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Triangular representations
Triangular set: n polynomials in n unknowns over a field K, of the form

To(X1,...,X,)

To(X1, X2)
Tl(X1)7

with the conditions
e I; is monic in X,

e (optional) the ideal (T) generates a separable extension of K.

The system has no multiple root.
Note:
e particular case of a zero-dimensional Grobner basis.

e we can hide parameters in the base field.



Representation of algebraic sets

Example: the family

To=X2+ (- )Xo+ ()

defines an equiprojectable variety (Aubry-Valibouze) of the form
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Some examples



Using symmetries

Let S(X) be a self-reciprocal polynomial of degree d, with S(0) # 0:

S(X)=X48 (%) .

Example:  1X%-5X°4+6X%-9X3 +6X°-5X + 1.

Suppose we want to factor S. In order to make the factorization easier, we
introduce ¥ = X + % Then,



Using symmetries

Let S(X) be a self-reciprocal polynomial of degree d, with S(0) # 0:

S(X)=X48 (%) .

Example:  1X%-5X°4+6X%-9X3 +6X°-5X + 1.

Suppose we want to factor S. In order to make the factorization easier, we

introduce ¥ = X + % Then,

1. consider the equations

Y — (X ++)
X0 —5X5 +6X*—9X3+6X2—-5X+1



Using symmetries

2. change the order of X and Y

X?2-YX+1
T: Y3—-5Y24+3Y +1



Using symmetries

2. change the order of X and Y

X?2-YX+1
T: Y3—-5Y24+3Y +1

3. factor T' (or find a single factor)

X2 -YX+1
Y2 4y — 1



Using symmetries

4. recover the factors of S by changing back the order

Y — (X + %)
X+ —4X3 4+ X2 - 4X +1.



Using symmetries

4. recover the factors of S by changing back the order

Y — (X + %)
X+ —4X3 4+ X2 - 4X +1.

Motivation: Point-counting in genus 2 (with P. Gaudry):
e one has to factor a polynomial over a large finite field;

e for help, one knows a polynomial R(X) that plays the role of X + %



Power series multiplication

The monomial ideal

is triangular.

There seems to be no straightforward algorithm to multiply modulo (T
efficiently.



Polynomial multiplication

Reductions:
e to multiply polynomials of degree d, enough to multiply series mod X¢;

e we can take d = 2%.

From uni- to multivariate (with d = 8 = 23)
o write X = Xy, and introduce X7, Xo;

e use the equality between ideals

X, — X3 X2 - X,
X1 _XO2 — X12 _X2
X0 X3

e change of basis is free via base-2 decomposition of indices.



Artin-Schreier (characteristic 2)

To handle degree-2 extensions
e of the form F[X]/(X? — X — a),
e where char(F)= 2.

Algorithms such as Couveignes’ generate towers

X2 —Xn — Oén(Xl,.. -aXn—l)

n

X22 —X2 —(JZQ(Xl)
X12 —X1 — (1

and we have to compute modulo such T's.



Implicitization

The field K may be a rational function field L(Y7,...,Y,): leads to a
representation of the generic solutions of systems of positive dimension.

Example:

1pg* +q* +q+p°q— 6pg +p + p?

x P

3 Pq ’
y 1(g—14+p)(-¢—1+p)(—=g+1+p)
9 Pq ’
. L e+De+ 1) e+2¢"+ ¢ +p+pg’ + 20" —p'¢" +p° + gp)’
36 P?’¢*(p+q+1)*

is triangular in L(p, )|z, y, 2], and represents the “generic points” of a variety

defined over IL by equations in L|p, ¢, x,y, z| (provided by |. Kogan.)



Implicitization

The field K may be a rational function field L(Y7,...,Y,): leads to a
representation of the generic solutions of systems of positive dimension.

Example:
q — CO(:Ca Y, Zap)
p” 4 bi(z,y,2)p + bo(z,y, 2)

5612 + a’ll(yv Z)xll + alO(ya Z)xlo T

is triangular in L(y, z)[x, p, q], and represents the “generic points” of the same

variety.



Our questions



Previous work

1932 Ritt

1978 Wu
Characteristic sets (Chou, Gao, Wang, Hubert, .. .)

1987 Duval

Constructible sets (Gomez-Diaz, Delliere, .. .)

1991 Lazard

Dimension zero
1992 Lazard

1991 Kalkbrenner
Regular chains (Moreno Maza, Aubry, ...)

Usually complex algorithms, especially in positive dimension.



Where the question stands
Already in dimension zero. ..

Compared to Grobner bases?
e harder to compute than degree bases?

e faster arithmetic?

Compared to primitive element representations?
e more structure

e slower arithmetic?



Polynomial multiplication

Polynomial multiplication is a basic problem, with a variety of answers.
(F,G) € Klz] — FG.
m naive product, Karatsuba, Toom-Cook, FFT’s,

m cost written M(d)

Matrix multiplication

Another fundamental question is matrix multiplication:

(A,B) € M,(K) — AB.

An exponent of matrix multiplication is an w such that matrix multiplication

can be done in O(n%).



Known results

Using
e divide-and-conquer,
e Newton-Hensel lifting,
e baby steps / giant steps, ...

algorithms can be designed on top of polynomial and matrix multiplication, and
their complexity can be expressed in terms of M and w.

Goal: develop such a family of algorithms for triangular representations.

with Dahan, Jin, Li, Moreno Maza, Pascal, Wu, Xie

How:
e understand the hierarchy of problems;

e at the software level, concentrate the effort on a few key subroutines.



Dimension zero



Setting

Input data:
e T is a triangular set in K[X] = K[X7,..., X,];

e the natural measure of complexity is é = d; - - - d,,, with d; = deg(T;, X;).

|deal target:

e algorithms for basic operations with T that would have cost O™ (éT).

If this is too difficult. . .

e algorithms of complexity O7(F(n)dt) or O (F(n)d%).

We use O7( ) to denote the omission of logarithmic factors.



Multiplication

Input: A and B in K[X], reduced modulo (T).

Output: AB modulo (T).

Cost: O™ (4™0).

Algorithm:  (A,B) — C=AB e K[X] +— C mod (T).
The reduction modulo (T) extends the algorithm for univariate Euclidean
division (Cook, Sieveking, Kung).

e a direct recursive approach leads to 3"M(dy) - - - M(d,,) =~ O™ ((3k)"éT).

e we use a mixed dense / recursive algorithm.

e practical algorithm.

What's missing: getting rid of the exponential factor 4.



Inversion

Input: A € K[X], reduced modulo (T).
Output: A~ modulo (T) (supposing it exists), error otherwise.
Cost: O™ (K™6r).

Algorithm: a recursive Euclidean algorithm.

e if (T') is maximal, no big problem (theoretically).

e clse, leading terms can be zero-divisors; this induces splittings and requires

an effective multiple reduction:
K[X]/(T) — K[X]/{U1) x -+ x K[X]/(Up,).

e complex recursive algorithm, using fast algorithms for GCD, modular

reduction, coprime factorization.

What's missing: a theoretically / practically good algorithm.



Change of order, dimension zero

Input: T and a target order on the variables.

Output: A triangular set T’ for the target order such that (T) = (T’) (if it
exists).
Cost in two variables:
o O(8¥TV/2) where w is the exponent of linear algebra.

e O (dT) bit-cost over finite fields.

Algorithm.

e Leverrier-like algorithm, using trace computations (Rouillier, Diaz

Toca-Gonzalez Vega),
e fast modular composition (Brent-Kung),

e over finite fields, Kedlaya-Umans.

What's missing: an algorithm in O™ (K" ).



Positive dimension



Setting

Basic object:
e VCK isa variety of dimension r and degree A, defined over K.

e V irreducible (for simplicity).

Representations of V':

e Given an order on X, there exists a partition of X into free variables Y and
algebraic variables Z, and T in K(Y)|Z], such that

* T is a triangular set for the induced order on Z,

* (T) =I(V) - K(Y)|Z].

e T describes the generic points of V.

Target:

e algorithms of complexity polynomial in A, when possible.



Degree bounds

Question: what are the degrees that can appear in T7?

Answer: the degrees in the algebraic variables are < A; the degrees in the free

variables are < 2A7Z.

Remark: instead of T, one can use U, with

. (’9T1 (9T7;_1
00Xy 00X,

Then all degrees in U; are < 2A.

Uz’ Tz mod <T1,...,T7;_1>.

What's missing: bit-size, when K = Q.



Lifting techniques

Input:
e asystem F=(Fy,...,F,_,)suchthat V C V(F) and V ¢ V(Jac(F,Z)).
e the specialization T(0,Z) (assumed to be lucky).

Output: T.

Algorithm: compute expansions of T modulo <Y>2i, and recover the coefficients

in K(Y) by multivariate rational function reconstruction.

Complexity: combines the costs of most previous subroutines, not polynomial

in A.

Remark: also works to lift Z/pZ — Q.



Change of order, positive dimension

Input: A triangular set T in K(Y)[Z] and a target order on X.
Output: The specialization T'(0,Z’).

Algorithm:

e finding the free / algebraic variables for the target order;

e going from T(0,Z) to T’(0,Z’) changing one variable at the time.

Complexity: polynomial in A. Combines the costs of most previous

subroutines.



Summary

As of now: the previous algorithms are sufficient to treat several applications.

e implementations of low-level algorithms in C.

e lifting and change of order in positive dimension available in Maple
(RegularChains: Lemaire, Moreno Maza, Xie).
Ongoing work: solving general systems, by incremental intersection.
e previous algorithms

e (sub)resultant techniques



Complexity of multiplication



In one variable

Quotient and remainder: Euclidean division
T.B+— BmodT,

with degT = d and deg B < 2d costs 2M(d) + O(d) base ring operations,

assuming precomputations (Cook, Sieveking, Kung).

The trick: power series division at oo.

Modular multiplication: 3M(d) + O(d)



In several variables

Let now T be a triangular set of multi-degree (d1,...,d,). Plain recursive:
3"M(dy) - - - M(d,).

For M(d) = kdlog(d)loglog(d), this is essentially (3k)"dr.

Remark: this is polynomial in d1 (because one can assume all d; > 2, so

S > 27).

All purpose algorithm: O™ (4™dt).
e mixed dense / recursive algorithm, relying on polynomial multiplication.
e we start by expanding the product and reducing it.

e So no way to get better than 2"or.



Practical aspects

The algorithm was implemented by Xin Li:
e C code.

e univariate FFT multiplication and Kronecker substitution.

Time
Magma
10 - Our code
9 L
8 L
7 L
6 L
5 L
4t
3 L
2t
0




Beating the 4™ factor

Interpolation techniques (cf. FFT multiplication, Pan).

e When all T; factor into linear terms, V(T) is a union of K-rational points
that form an equiprojectable set.

e Fast univariate evaluation and interpolation has complexity O(M(d) log(d)).

e Using this, one can multiply polynomials modulo (T) in time




Homotopy techniques

When the roots are not in K:

e set up a homotopy with a system that splits
V;; = <€Uz‘ + (1 — E)TZ
e AB mod (T) = subs(e = 1, AB mod (V)).

e the V; have roots in K[|¢]] (Hensel lemma).

Using the evaluation / interpolation algorithm over K|[¢]].
e complexity O™ (drrr)

e T is the needed precision in €



Homotopy techniques
Nice monomial supports induce low precisions.

Univariate polynomials

o T; =T;(X;)

o r7 =0() d;)
Polynomial multiplication

e T) = X? - X, 4

e r7 = O0(n) = M(d) = O(dlog(d)?log(log(d))?---)
Artin-Schreier (over F5)

o T, = X2+ X, +a;(Xy,..., X 1)

o rr = O(1.5™).



