
The Objects
Automorphism and Isomorphism

Canonical Augmentation

Partition Refinement for Classification
Sage Days 10 – Nancy, France

Robert L. Miller
University of Washington

October 11, 2008

Robert L. Miller University of Washington Partition Refinement for Classification



The Objects
Automorphism and Isomorphism

Canonical Augmentation

Requirements

Suppose we have a collection of objects such that:

Isomorphisms are finite permutations (of “points”).

There is a total ordering of the objects.

A refinement function is implemented.

A comparison function is implemented.

An equivalence function is implemented.
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Rewards

Then we obtain:

Automorphism group computation

(with base and strong generating set).

Isomorphism calculation.

Canonical labels (unique representatives for an iso-class).
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Overview

The algorithms are based on B.D.McKay’s partition method for
graphs, which was generalized by J.S.Leon.

Ordered partitions – the blocks are ordered, and within each
block the elements are unordered.

(B1, ...,Bk) is finer than (B ′1, ...,B
′
n) if k ≥ n and each Bi is a

subset of some B ′i ′ .

A partition stack is a sequence of ordered partitions, each one
(strictly) finer than the previous.

Robert L. Miller University of Washington Partition Refinement for Classification



The Objects
Automorphism and Isomorphism

Canonical Augmentation

Overview

A partition stack whose finest partition consists of singletons
(i.e. a discrete partition) defines an ordering of the points.

A tree consisting of partition stacks is traversed, whose leaves
correspond to different orderings of the point sets.

Automorphisms of the object induce “automorphisms” of this
tree.
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The Refinement Function

The hardest of the three functions to implement:

INPUT: An ordered partition Π of the points of an object A.

OUTPUT: An ordered partition Π′ which is finer than Π, such
that any automorphism of A that respects Π also respects Π′.

Obviously one can define Π′ := Π, but this is suggested only
for the very patient.

Examples can be found in
sage.groups.perm_gps.partn_ref.refinement_*
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The Comparison Function

INPUT: Two objects A and B.

OUTPUT: -1 if A < B, 0 if A = B, or 1 if A > B.

Recall the requirement of a total ordering on objects, which is
defined by this function: equality is needed to compute the
automorphism group, order is needed for canonical labels.

Examples can be found in
sage.groups.perm_gps.partn_ref.refinement_*
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The Equivalence Function

INPUT: A ordered partition Π of the points of an object A.

OUTPUT: True if the function can determine that all the
discrete ordered partitions finer than Π are automorphic.

In other words, each pair of such discrete partitions induces an
automorphism of A.

The function may return False even if the above holds.

Examples can be found in
sage.groups.perm_gps.partn_ref.refinement_*
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Future Directions for Work

It should be possible to require that isomorphisms are
elements of a particular subgroup G of Sn.

Requires Schreier-Sims algorithm (presently available via GAP
and others), as well as several other BSGS algorithms.

This will lead to several important permutation group
computations, such as group intersection.

Implement more types of objects!

Substitution and functorial composition of species.
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Canonical Augmentation

An algorithm for generating one representative from each
isomorphism class. Also due to B.D.McKay. (Work in progress)

Given any object A, there must be a sequence of
augmentations leading to A:

A0 → A1 → · · · → An = A.

There must be a function o defined on objects, taking values
in Z≥0, called the order , such that each augmentation
increases the order by one. In the above sequence, o(Ai ) = i .

Call the set of chains as above the search tree.
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Orbits on Children

Define the set of children C (X ) of X to be the set of Y such
that there is an augmentation X → Y and such that
o(X ) + 1 = o(Y ).

Suppose we have just generated X . Then the automorphism
group of X induces an action on C (X ). We want to select
just one representative from each orbit under this action– call
this transversal C ′(X ).

If we simply generate all the elements of C ′(X ), we will
eventually get repeats.
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When is an augmentation canonical?

Note that an isotype X will usually appear many times in the
search tree, via different chains of augmentations.

An augmentation is an ordered pair of labeled objects (X ,Y ),
such that Y ∈ C (X ).

An isomorphism of augmentations (W ,X ) ∼= (Y ,Z ) is a
permutation γ such that γ(W ) = Y and γ(X ) = Z .
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When is an augmentation canonical?

We want to define a canonical parent M(X ) for each object of
positive order. Often this can be defined in terms of a
canonical labeling map. For example, if we are augmenting
graphs by adding one vertex at a time and edges connected to
that vertex, we can define M(X ) as follows.

If γ is the permutation taking X to its canonical label, simply
delete γ−1(n) from X , where n is the highest vertex.

In general, an augmentation (X ,Y ) is canonical if
(X ,Y ) ∼= (M(Y ),Y ).

Instead of the generated object being canonical, the object
was generated in a canonical way.
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Canonical Augmentation I

If we traverse only those nodes which are generated from minimal
objects by a chain of canonical augmentations, then note if X ∼= Y
are both generated, then we have

(P(X ),X ) ∼= (M(X ),X ) ∼= (M(Y ),Y ) ∼= (P(Y ),Y ),

which in particular implies that P(X ) ∼= P(Y ). If isomorphs have
already been rejected on the parents, we can conclude that
p(X ) = p(Y ) =: Z . Since (Z ,X ) ∼= (Z ,Y ), there is a γ ∈ Aut(Z )
such that γ · X = Y . But we have already eliminated this
possibility by computing C ′(Z ).
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Canonical Augmentation II

Algorithm 4

def traverse(node X):
report X
CX ← C(X)
for each orbit of CX under Aut(X):

select one representative Z
if (Z,p(Z)) ∼= (Z,m(Z)):

traverse(Z)
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Already implemented in Sage

sage: for g in graphs(4):
... print g.characteristic_polynomial()
x^4
x^4 + x^2
x^4
x^4 + x^2
x^4 + x^2
x^4 + 1
x^4 + x^2 + 1
x^4 + 1
x^4
x^4 + x^2
x^4 + 1

Robert L. Miller University of Washington Partition Refinement for Classification



The Objects
Automorphism and Isomorphism

Canonical Augmentation

References

Technical:

B. D. McKay, Practical graph isomorphism, Congr. Numer.
30 (1981), 45–87.

J. S. Leon, Permutation Group Algorithms Based on
Partitions, I: Theory and Algorithms, J. Symbolic
Computation 12 (1991), 533–583.

B. D. McKay, Isomorph-free exhaustive generation, J.
Algorithms 26 (1998), 306–324.

Overview:
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Fin.
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