Partition Refinement for Classification Sage Days 10 – Nancy, France

Robert L. Miller University of Washington

October 11, 2008

Requirements

Suppose we have a collection of objects such that:

- Isomorphisms are finite permutations (of "points").
- There is a total ordering of the objects.
- A refinement function is implemented.
- A comparison function is implemented.
- An equivalence function is implemented.

Rewards

Then we obtain:

- Automorphism group computation (with base and strong generating set).
- Isomorphism calculation.
- Canonical labels (unique representatives for an iso-class).

Overview

The algorithms are based on B.D.McKay's partition method for graphs, which was generalized by J.S.Leon.

- Ordered partitions the blocks are ordered, and within each block the elements are unordered.
- $(B_1,...,B_k)$ is finer than $(B'_1,...,B'_n)$ if $k \ge n$ and each B_i is a subset of some $B'_{i'}$.
- A partition stack is a sequence of ordered partitions, each one (strictly) finer than the previous.

Overview

- A partition stack whose finest partition consists of singletons (i.e. a discrete partition) defines an ordering of the points.
- A tree consisting of partition stacks is traversed, whose leaves correspond to different orderings of the point sets.
- Automorphisms of the object induce "automorphisms" of this tree.

The Refinement Function

- The hardest of the three functions to implement:
- INPUT: An ordered partition Π of the points of an object A.
- OUTPUT: An ordered partition Π' which is finer than Π , such that any automorphism of A that respects Π also respects Π' .
- Obviously one can define $\Pi' := \Pi$, but this is suggested only for the very patient.
- Examples can be found in sage.groups.perm_gps.partn_ref.refinement_*

The Comparison Function

- INPUT: Two objects A and B.
- OUTPUT: -1 if A < B, 0 if A = B, or 1 if A > B.
- Recall the requirement of a total ordering on objects, which is defined by this function: equality is needed to compute the automorphism group, order is needed for canonical labels.
- Examples can be found in sage.groups.perm_gps.partn_ref.refinement_*

The Equivalence Function

- INPUT: A ordered partition Π of the points of an object A.
- OUTPUT: True if the function can determine that all the discrete ordered partitions finer than Π are automorphic.
- In other words, each pair of such discrete partitions induces an automorphism of *A*.
- The function may return False even if the above holds.
- Examples can be found in sage.groups.perm_gps.partn_ref.refinement_*

Future Directions for Work

- It should be possible to require that isomorphisms are elements of a particular subgroup G of S_n .
- Requires Schreier-Sims algorithm (presently available via GAP and others), as well as several other BSGS algorithms.
- This will lead to several important permutation group computations, such as group intersection.
- Implement more types of objects!
- Substitution and functorial composition of species.

Canonical Augmentation

An algorithm for generating one representative from each isomorphism class. Also due to B.D.McKay. (Work in progress)

 Given any object A, there must be a sequence of augmentations leading to A:

$$A_0 \rightarrow A_1 \rightarrow \cdots \rightarrow A_n = A$$
.

- There must be a function o defined on objects, taking values in $\mathbb{Z}_{\geq 0}$, called the *order*, such that each augmentation increases the order by one. In the above sequence, $o(A_i) = i$.
- Call the set of chains as above the search tree.

Orbits on Children

- Define the set of *children* C(X) of X to be the set of Y such that there is an augmentation $X \to Y$ and such that o(X) + 1 = o(Y).
- Suppose we have just generated X. Then the automorphism group of X induces an action on C(X). We want to select just one representative from each orbit under this action— call this transversal C'(X).
- If we simply generate all the elements of C'(X), we will eventually get repeats.

When is an augmentation canonical?

- Note that an isotype X will usually appear many times in the search tree, via different chains of augmentations.
- An augmentation is an ordered pair of labeled objects (X, Y), such that $Y \in C(X)$.
- An isomorphism of augmentations $(W, X) \cong (Y, Z)$ is a permutation γ such that $\gamma(W) = Y$ and $\gamma(X) = Z$.

When is an augmentation canonical?

- We want to define a canonical parent M(X) for each object of positive order. Often this can be defined in terms of a canonical labeling map. For example, if we are augmenting graphs by adding one vertex at a time and edges connected to that vertex, we can define M(X) as follows.
- If γ is the permutation taking X to its canonical label, simply delete $\gamma^{-1}(n)$ from X, where n is the highest vertex.
- In general, an augmentation (X, Y) is canonical if $(X, Y) \cong (M(Y), Y)$.
- Instead of the generated object being canonical, the object was generated *in a canonical way.*

Canonical Augmentation I

If we traverse only those nodes which are generated from minimal objects by a chain of canonical augmentations, then note if $X \cong Y$ are both generated, then we have

$$(P(X),X)\cong (M(X),X)\cong (M(Y),Y)\cong (P(Y),Y),$$

which in particular implies that $P(X) \cong P(Y)$. If isomorphs have already been rejected on the parents, we can conclude that p(X) = p(Y) =: Z. Since $(Z, X) \cong (Z, Y)$, there is a $\gamma \in \operatorname{Aut}(Z)$ such that $\gamma \cdot X = Y$. But we have already eliminated this possibility by computing C'(Z).

Canonical Augmentation II

Algorithm 4

Already implemented in Sage

```
sage: for g in graphs(4):
        print g.characteristic_polynomial()
x^4
x^4 + x^2
x^4
x^4 + x^2
x^4 + x^2
x^4 + 1
x^4 + x^2 + 1
x^4 + 1
x^4
x^4 + x^2
x^4 + 1
```

References

Technical:

- B. D. McKay, Practical graph isomorphism, Congr. Numer. 30 (1981), 45–87.
- J. S. Leon, Permutation Group Algorithms Based on Partitions, I: Theory and Algorithms, J. Symbolic Computation 12 (1991), 533–583.
- B. D. McKay, Isomorph-free exhaustive generation, J. Algorithms 26 (1998), 306–324.

Overview:

• P. Kaski, P. R. J. Östergård, *Classification Algorithms for Codes and Designs*, Springer-Verlag, Berlin, 2006.

Fin.