Simultaneous Modular Reduction and Kronecker Substitution for small finite fields

Jean-Guillaume Dumas
Laurent Fousse
Bruno Salvy
Small field dense linear algebra

- Integer Factorization, discrete logarithm
 - Linear algebra modulo 2, modulo n=\(p_1 \cdot p_2 \cdots p_k\)
- Combinatorics
 - Integer normal forms, integer minimal/characteristic polynomials
- Stable Algorithms for numerical problems
 - Rational matrices: Chinese reconstruction
- Sparse Matrices
 - Bloc methods (Coppersmith-Wiedemann, Lanczos):
 \[\Rightarrow\] dense blocks such that \(MM\) is fast
 - Probabilistic Methods (e.g. success depends on field size):
 \[\Rightarrow\] Resolution in a finite extension
[May, Saunders, Wan, ISSAC 2007]

- Study of difference sets and partial difference sets in algebraic design theory

[Weng, Qiu, Wang, Xiang 2007]

- Requires computations of the rank of almost dense matrices of sizes 59049, 531441, 4782969, ...

- Modulo small primes $p \equiv 3 \mod 4$
 $p = 3, 7, 11, 19, 23, ...$
High performance / Exact computations?

- Memory: optimize memory accesses, cache usage etc.
 - cf numerical BLAS (ATLAS, GOTO, etc.)

- Exact computations (modular, finite fields, etc.)
 - Division (e.g.: modulo p) can be 10 to 100 times slower than machine multiplication/addition
 - SSE (128 bits registers): simultaneous arithmetic operations
 - in 2008, no integer multiplication available (only floating points)
FFLAS

[D, Gautier, Pernet 2002]

- Division management:
 - Homomorphism to Z: delay the modular reduction, compute a whole dot product before remaindering

- Locality management:
 - Blocks

- SSE usage:
 - Leave the linear algebra to a numerical code used exactly

- Integrated in Maple (LinearAlgebra:-Modular) and Magma since then
FFLAS: Exact linear algebra

Ex: Matrix multiplication mod a prime p
1. Convert matrices mod p towards floating point matrices (double)
2. Use numerical BLAS (e.g. GOTO) to multiply within floating point
3. Convert back the doubles modulo p

$O(n^2)$ conversions versus $O(n^3)$ fast arithmetic operations

⇒ Exact as long as dot products do not overflow
⇒ Each one must fit inside the mantissa
Ex.: $n \frac{(p-1)^2}{4} < 2^{52}$: for $p \leq 2^{16}$, $n=4\,000\,000$ is OK
 for $n \leq 6000$, modulo can have 20 bits

For larger primes or larger matrices, it is required to make the first recursive calls over the finite field and use the numerical routines only when the block is small enough.
Cache and SSE aware on a XEON 3.6 GHz
Strassen-Winograd Multiplication: 38% gain on a PIII 1.6 GHz

First recursive level threshold defined at install time
⇒ Recursive adaptive algorithm automatically sets further levels
FFLAS : 8.2 Gflops on a XEON 3.6 GHz
Compressed Arithmetic

0. Context

1. Compressed Arithmetic
 - Delayed reduction
 - Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
 - Dot product

2. Modular Polynomial Multiplication

3. Modular Linear Algebra
 - Matrix Compression
 - REDQ with Left and Right Matrix Compression
 - Full Compression

4. Small Extension Field Linear Algebra
Delayed Modular Reduction

- Instead of computing a modulo p residue modulo p for each arithmetic operation:
 - Delayed the reduction after several +,* ...

😊 Delayed reduction: if \(k p^2 < \text{wordsize} \) then
 - At least \(k \) products are possible without overflow!
 - Block operations by \(k \) and reduce only once every \(k \) products

👍 Tricks
- Test every accumulation and reduce only in case of overflow
- Make \(k \) operations first, and then only test for overflow
- Replace division: \(h = 2^{32} + x \Rightarrow h = x + \text{CORR}, \)
 where \(\text{CORR} = (2^{32} \% p) \)
- Use a centered modular representation
- ...
Dot product of a vector with 512 elements on a PIII 993 MHz

- Classic, (1)
- Montgomery, (3)
- block-overflow-Montgomery, (3d)
- block-overflow-ZpZ, (1d)
- block-overflow-center, (4d)
- double, (6)
Compressed arithmetic?

- Within $\mathbb{Z}/2\mathbb{Z}$, how to use only 7 bits per element?
- In $\mathbb{Z}/5\mathbb{Z}[X]$, how to use just 3 bits per coefficient?
- This talk: show that we can mimic binary/SSE behavior for small primes.

Use a Q-adic Transform (Kronecker substitution)
- Change of representation \leftrightarrow replace the indeterminate by a sufficiently large integer q:
 - $X^4+2X^3+3X^2+4X+5 \equiv 17314053 \mod 7$
 - $100^4+2.100^3+3.100^2+4.100+5 = 102030405$
Kronecker Substitution (Q-adic Transform)

- $Q=100$

- $A(X) = X + 1 \rightarrow DQT(A) = 100 + 1 = 101$

- $B(X) = X + 2 \rightarrow DQT(B) = 100 + 2 = 102$

- $DQT(A) \cdot DQT(B) = 10302$

- $A \times B = X^2 + 3X + 2$

- $DQT(A \times B) = 100^2 + 3 \cdot 100 + 2 = 10302$
Compressed polynomial multiplication

• Cut polynomials into blocks
 – E.g. \([1,2,3] \times [4,5,6]\), is replaced by \(1002003 \times 4005006 = 4013028027018\)

• Into Blocks
 8 operations
 instead of 61

\[
\begin{array}{c}
X^5+2X^4+3X^3 & \times
\end{array}
\begin{array}{c}
4X^2+5X+6
\end{array}
\]

\[
\begin{array}{c}
X^5+2X^4+3X^3 & \times
\end{array}
\begin{array}{c}
4X^2+5X+6
\end{array}
\]

\[
= \begin{array}{c}
16X^4+40X^3+73X^2+60X+36
\end{array}
\]

\[
\begin{array}{c}
4X^4+13X^3+28X^2+27X+18
\end{array}
\]

\[
\begin{array}{c}
4X^4+13X^3+28X^2+27X+18
\end{array}
\]

\[
\begin{array}{c}
X^4+26X^3+10X^2+12X+9
\end{array}
\]

\[
\begin{array}{c}
X^{10}+4X^9+
\end{array}
\begin{array}{c}
10X^8+20X^7+35X^6+
\end{array}
\begin{array}{c}
56X^5+70X^4+76X^3
\end{array}
\begin{array}{c}
73X^2+60X+36
\end{array}
\]

Only problem: how to reduce, fast?
1st tool: Floating point division

- Euclidian division \(r = k \cdot p + u \)
- How to compute \(k \) efficiently?
 - Direct integer division is (very) expensive
 - [Shoup’s NTL]: use floating point division
 - Precompute \(\text{invp} = 1.0 / \text{static_cast<double>(p)}; \)
 - Recover \(k \) by \(\left\lfloor r \cdot \text{invp} \right\rfloor \)

- Problem: due to rounding approximations results could be off by one
- Algorithm: breaks pipeline with tests to correct the results
Improvements: play with rounding modes

- Change of rounding modes is costly, still
 - 1 rounding mode for precomputations
 - 1 rounding mode for algorithms

- Three rounding modes:
 - ▲ (upward); ▼ (downward); ♦ (nearest)

- Benefits and drawbacks
 - rounding $1/p$ upward ensures that result is off only upward
 - only 1 test instead of two
 - Validity range is modified
Quotients with different rounding modes

<table>
<thead>
<tr>
<th>inv</th>
<th>mul</th>
<th>Range</th>
<th>Bound on r</th>
<th>Lost bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\triangle(\cdot)$</td>
<td>$\triangle(\cdot)$</td>
<td>$k \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\triangle(\cdot)$</td>
<td>$\diamond(\cdot)$</td>
<td>$k \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\triangle(\cdot)$</td>
<td>$\nabla(\cdot)$</td>
<td>$k \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\diamond(\cdot)$</td>
<td>$\triangle(\cdot)$</td>
<td>$k \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\diamond(\cdot)$</td>
<td>$\diamond(\cdot)$</td>
<td>$k - 1 \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\diamond(\cdot)$</td>
<td>$\nabla(\cdot)$</td>
<td>$k - 1 \leq</td>
<td>x</td>
<td>\leq k$</td>
</tr>
<tr>
<td>$\nabla(\cdot)$</td>
<td>$\triangle(\cdot)$</td>
<td>$k - 1 \leq</td>
<td>x</td>
<td>\leq k + 1$</td>
</tr>
<tr>
<td>$\nabla(\cdot)$</td>
<td>$\diamond(\cdot)$</td>
<td>$k - 1 \leq</td>
<td>x</td>
<td>\leq k$</td>
</tr>
<tr>
<td>$\nabla(\cdot)$</td>
<td>$\nabla(\cdot)$</td>
<td>$k - 1 \leq</td>
<td>x</td>
<td>\leq k$</td>
</tr>
</tbody>
</table>
2nd tool: Montgomery reduction REDC

- System division replaced by shifts and masks

```
#define MASK 65535UL
#define B 65536UL
#define HALF_BITS 16

/* nim is precomputed to -1/p mod B
with the extended gcd */

AXPY:
  1. c = (a \times x + y);

REDC:
  2. unsigned long c0 (c & MASK);  /* c mod B */
  3. c0 = (c0 * nim) & MASK;      /* -c/p mod B */
  4. c += c0 * p;                 /* c = 0 mod B
      c = ax+y mod p */
  5. c >>= HALF_BITS;             /* high bits of c */

CORRECTION:
  6. return (c>p?c-p:c);          /* 0 < c < 2p */
```
REDQ: simultaneous reduction

[D. 2008]

- How to compute k modular reductions simultaneously?

 - Floating point reduction [Shoup]:
 - \(r = r - \lfloor r/p \rfloor \times p \)

 - [Montgomery] reduction (REDC):
 - Use divisions by powers of 2 to avoid division by \(p \)

⇒ Combine floats/REDC on the DQT:

 REDQ_COMPRESSION
 1. Compute a SINGLE division: \(d = \lfloor r/p \rfloor \)
 2. “Shift”/multiply k times: \(u_i = r/q^i - \lfloor d/q^i \rfloor \times p \)
 3. Adjust: \(r_i = (u_i - qu_{i+1}) \mod p \)
Binary case: packing multiplications

- After each iteration, $\log_2(q)$ bits need to be discarded
 - Recopy parts of r into several words
 - Only $\lceil k/2 \rceil$ axpy required
Fast REDQ: tabulate CORRECTION

- CORRECTION is slow (back to k divisions !)
- But all the u_i are smaller than p thanks to the COMPRESSION

⇒ Adjustment is tabulated: $r = Q_d u \mod p$

$$Q_d = \begin{bmatrix} 1 & -q & 0 & \ldots & 0 \\ 0 & \ldots & \ldots & \ldots & \vdots \\ \vdots & \ldots & \ldots & \ldots & 0 \\ \vdots & \ldots & \ldots & \ldots & -q \\ 0 & \ldots & \ldots & 0 & 1 \end{bmatrix} = \begin{bmatrix} Q_d \\ 0 \ldots 0 \ 1 \end{bmatrix}$$
Fast REDQ: time-memory trade-off

\[
Q_{2d} = \begin{bmatrix}
Q_d & 0 \\
0 & 1 \\
\end{bmatrix}
\]

\[
Q_{2d+1} = \begin{bmatrix}
Q_{d+1} & 0 \\
0 & 1 \\
\end{bmatrix}
\]

<table>
<thead>
<tr>
<th>Memory</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(d \text{ (mul, add, mod)})</td>
</tr>
<tr>
<td>(p^2)</td>
<td>(d) accesses</td>
</tr>
<tr>
<td>(p^i)</td>
<td>(\left\lceil \frac{d}{i-1} \right\rceil) accesses</td>
</tr>
<tr>
<td>(p^{d+1})</td>
<td>1 access</td>
</tr>
</tbody>
</table>
Algorithm 2 Q_6 with an extra memory of size p^3

Input: $[u_0\ldots,u_6] \in (\mathbb{Z}/p\mathbb{Z})^7$;
Input: a table Q_2 of the associated 2×3 matrix-vector multiplication over $\mathbb{Z}/p\mathbb{Z}$.

Output: $[\mu_0,\ldots,\mu_6]^T = Q_6[u_0\ldots,u_6]^T$.

1: $a_0, a_1 = Q_2[u_0,u_1,u_2]^T$;
2: $b_0, b_1 = Q_2[u_2,u_3,u_4]^T$;
3: $c_0, c_1 = Q_2[u_4,u_5,u_6]^T$;
4: Return $[\mu_0,\ldots,\mu_6]^T = [a_0, a_1, b_0, b_1, c_0, c_1, u_6]^T$;
REDQ implementation efficiency

- Simultaneous reductions timings:
 Profiling REDQ$_5$:
 - Faster than five divisions ...
 - But 58% of the time was spent in type casts

Solution: include some casts in the REDQ_CORR table
 - 54% gain
 - Size of k-REDQ_CORR multiplied by k
32 bits fast 3-REDQ

inline void REDQ_COMP(UINT32_three& res, const double r, const double p) {
 _ULL64_unions r_ll_copy, t_ll_copy; // union of 64, 17-34 or 34-17 bits

 r_ll_copy._64 = static_cast<UINT64>(r); t_ll_copy._64 = static_cast<UINT64>(r/p); // One float division

 res.high = static_cast<UINT32>(r_ll_copy._64*r_ll_copy._17_34.high); res.low = r_ll_copy._17_34.low; // One axpy

 r_ll_copy._17_34.low = r_ll_copy._34_17.high; // Packing
 t_ll_copy._17_34.low = t_ll_copy._34_17.high; // Packing

 r_ll_copy._64 -= t_ll_copy._64*p; // Two axpy in one

 res.mid = static_cast<UINT32>(rll._17_34.high);

 inline void REDQ3_CORR(UINT32_three& res, const Container<_UINT32 >& Q3) {
 res._32=Q3[res._32];
 }
}
Compressed Arithmetic

0. Context

1. Compressed Arithmetic
 – Delayed reduction
 – Kronecker Substitution and polynomial multiplication
 – REDQ : Simultaneous Modular Reduction
 – Dot product

2. Modular Polynomial Multiplication

3. Modular Linear Algebra
 – Matrix Compression
 – REDQ with Left and Right Matrix Compression
 – Full Compression

4. Small Extension Field Linear Algebra
NTL polynomial multiplication

- Characteristic 2: use of bits as elements
- Odd characteristic?
Compressed polynomial multiplication

• Cut polynomials into blocks
• \([1,2,3] \times [4,5,6]\), replaced by \(1002003 \times 4005006 = 4013028027018\)

• Into Blocks

 8 operations instead of 61

 \[
 \begin{array}{c|c}
 1002003 & 4005006 \\
 \hline
 1002003 & 4005006 \\
 \hline
 1 \quad 026 \quad 010 \quad 012 \quad 009
 \end{array}
 \]

 \[
 \begin{array}{c|c}
 1004 & 10 \quad 020 \quad 035 \\
 \hline
 56 \quad 070 \quad 076 & 73 \quad 060 \quad 036
 \end{array}
 \]

Then Reduce each bloc using REDQ
Complexity

- P of degree N in $X \rightarrow P$ of degree D_q in $Y = X^{d+1}$

\[
D_q = \left\lfloor \frac{N + 1}{d + 1} \right\rfloor - 1
\]

\[
n_d = \left\lfloor \frac{2^{3+1}}{(p - 1)^2} \right\rfloor ; \quad n_q = \left\lfloor \frac{q}{(d + 1)(p - 1)^2} \right\rfloor
\]

<table>
<thead>
<tr>
<th></th>
<th>Mul & Add</th>
<th>Reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed</td>
<td>$(2N + 1)^2$</td>
<td>$(2N + 1) \left\lfloor \frac{2N+1}{n_d} \right\rfloor$ REDC</td>
</tr>
<tr>
<td>d-FQT</td>
<td>$(2D_q + 1)^2$</td>
<td>$(2D_q + 1) \left\lfloor \frac{2D_q + 1}{n_q} \right\rfloor$ REDQ$^{2d+1}$</td>
</tr>
</tbody>
</table>
Example

- Degree $N=500$
- prime $p=3$
- Kronecker substitution with 4 elements per block
 - $D_q = 125$
 - $n_q = 11$
 - $n_d = 4.5 \times 10^{16} \gg N$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Mul & Add</th>
<th>Reductions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delayed</td>
<td>10^6</td>
<td>10^3</td>
</tr>
<tr>
<td>4-FQT (floats, tabulations)</td>
<td>8.6×10^4</td>
<td>5.7×10^3</td>
</tr>
</tbody>
</table>
Modular polynomial multiplication

- Compressed arithmetics + Delayed reduction

- Classical algorithm
- Karatsuba with recursive threshold
- NTL is using FFT
Compressed Arithmetic

0. Context

1. Compressed Arithmetic
 - Delayed reduction
 - Kronecker Substitution and polynomial multiplication
 - REDQ: Simultaneous Modular Reduction
 - Dot product

2. Modular Polynomial Multiplication

3. Modular Linear Algebra
 - Matrix Compression
 - REDQ with Left and Right Matrix Compression
 - Full Compression

4. Small Extension Field Linear Algebra
Linear algebra with Q-adic Transform

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \times \begin{bmatrix}
 e & f \\
 g & h
\end{bmatrix} = \begin{bmatrix}
 ae + bg & af + bh \\
 ce + dg & cf + dh
\end{bmatrix}
\]

\[
\begin{bmatrix}
 Qa + b \\
 Qc + d
\end{bmatrix} \times \begin{bmatrix}
 e + Qg & f + Qh
\end{bmatrix} =
\]

\[
\begin{bmatrix}
 * + (ae + bg)Q + * Q^2 & * + (af + bh)Q + * Q^2 \\
 * + (ce + dg)Q + * Q^2 & * + (cf + dh)Q + * Q^2
\end{bmatrix}
\]
Lower bound on Q

- Each multiplication is \(\leq (p-1)^2 \)

- Polynomial of degree \(d \)
 - \(d+1 \) coefficient per machine word
 - Compression factor of \((d+1) \)
 - Each polynomial coefficient is \(\leq (d+1)(p-1)^2 \)

- \(Q \)-adic transform gets correct values by polynomial multiplication if

\[
(d+1)(p-1)^2 < Q
\]
Can also use Delayed reduction

- Compression factor of $d+1$
- For a row of size k, use $k/(d+1)$ machine words ($k/(d+1)$ polynomials of degree d)
- Result is correct if intermediate coefficients do not overflow Q:

$$\frac{k}{d+1}(d + 1)(p - 1)^2 = k(p - 1)^2 < Q$$
Algorithm CMM

1. CA = CompressReverseRows(A);
2. CB = CompressColumns(B);
3. C = CA \times CB

4. Coefficient recovery:
 1. Get the middle degree term
 2. Compute one remainder
Middle degree term recovery

- Q-adic polynomial stored in a machine word
- Shift
- Mask
- Lower bits \((1+2Q)\) are not required
 \(\Rightarrow\) floating point precision
Available mantissa and upper bound on Q

- Q-adic polynomial stored in a machine word

 \[
 1+ 2Q^+ 3Q^2+ 4Q^3 + 5Q^4
 \]

- Floating point precision

 \[
 1Q^{-2+} 2Q^{-1+} 3^+ 4Q + 5Q^2
 \]

- Shift/Floor

 \[
 3^+ 4Q + 5Q^2
 \]

- Mask

 \[
 3
 \]

\[
\sum_{i=0}^{2^d} \frac{k}{d+1} (i+1)(p-1)^2 Q^i < 2^\beta
\]

\[
Q^{d+1} < 2^\beta
\]
21.6 Gflops on a XEON 3.6 GHz

Finite field Winograd matrix multiplication with Goto BLAS on a XEON, 3.6 GHz

Matrix order
LinBox 2.0 will have an adaptive strategy deciding at runtime based on (size, prime, recursive level) which should smoothen the drops and further improve the small size cases.
Further variants in the strategy

- Smaller matrices
 - Reduce the memory usage/management
- Less modular reductions
 - Speed up conversion times
- More compression
 - Less arithmetic operations
Left or Right Compression

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\times
\begin{bmatrix}
 e + Qf \\
 g + Qh
\end{bmatrix}
= \\
\begin{bmatrix}
 (ae + bg) + Q(af + bh) \\
 (ce + dg) + Q(cf + dh)
\end{bmatrix}
\]

- Same bounds on Q
- But here not only the middle term needs recovery

⇒ REDQ
Full Compression

- Compression is squared
- Q can be R^{d+1}
- Much lower bound on Q
- Reductions are squared

\[
\begin{bmatrix}
a + Qc & b + Qd \\
\end{bmatrix}
\begin{bmatrix}
e + Rf \\
g + Rh \\
\end{bmatrix} =
\begin{bmatrix}
(ae + bg) + Q(ce + dg) + R(af + bh) + QR(cf + dh) \\
\end{bmatrix}
\]
Comparison

- Compression factor $e = \beta / \log_2(Q)$
 - CMM, Left or Right: $d = \lfloor e \rfloor - 1$
 - Full: $d = \lfloor \sqrt{e} \rfloor - 1$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Operations</th>
<th>Reductions</th>
<th>Conversions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMM</td>
<td>$O\left(mn \left(\frac{k}{\varepsilon} \right)^{2} \right)$</td>
<td>$m \times n$ REDC</td>
<td>$\frac{1}{\varepsilon} mn$ INIT$_{\varepsilon}$</td>
</tr>
<tr>
<td>Right Comp.</td>
<td>$O\left(m k \left(\frac{n}{\varepsilon} \right)^{2} \right)$</td>
<td>$m \times \frac{n}{\varepsilon}$ REDQ$_{\varepsilon}$</td>
<td>$\frac{1}{\varepsilon} mn$ EXTRACT$_{\varepsilon}$</td>
</tr>
<tr>
<td>Left Comp.</td>
<td>$O\left(n k \left(\frac{m}{\varepsilon} \right)^{2} \right)$</td>
<td>$\frac{m}{\varepsilon} \times n$ REDQ$_{\varepsilon}$</td>
<td>$\frac{1}{\varepsilon} mn$ EXTRACT$_{\varepsilon}$</td>
</tr>
<tr>
<td>Full Comp.</td>
<td>$O\left(k \left(\frac{mn}{\varepsilon} \right)^{2} \right)$</td>
<td>$\frac{m}{\sqrt{\varepsilon}} \times \frac{n}{\sqrt{\varepsilon}}$ REDQ$_{\varepsilon}$</td>
<td>$\frac{1}{\varepsilon} mn$ INIT$_{\varepsilon}$</td>
</tr>
</tbody>
</table>
Benefits of REDQ

Finite field Winograd matrix multiplication with Goto BLAS on a XEON, 3.6 GHz

GIGA finite field operations per second

Matrix order

CMM Compressed double fgemm mod 3
Right Compressed double fgemm mod 3
22 Gflops on a XEON 3.6 GHz
Compressed Arithmetic

0. Context

1. Compressed Arithmetic
 - Delayed reduction
 - Kronecker Substitution and polynomial multiplication
 - REDQ : Simultaneous Modular Reduction
 - Dot product

2. Modular Polynomial Multiplication

3. Modular Linear Algebra
 - Matrix Compression
 - REDQ with Left and Right Matrix Compression
 - Full Compression

4. Small Extension Field Linear Algebra
• We use a generator \(g \) of the invertible group of \(GF(p^k) \)

\[
\text{e.g. } GF(9) \cong \mathbb{Z}/3\mathbb{Z}[X] / (X^2+X-1) = \{0\} \cup \{(X+1)^i, i=0..7\} = \{0,1,2,X,X+1,X+2,2X,2X+1,2X+2\}
\]

• \((X+1)^0 = 1\)
• \((X+1)^1 = X+1\)
• \((X+1)^2 = X^2+2X+1 = X+2\)
• \((X+1)^3 = (X+2)(X+1) = 2X\)
• \((X+1)^4 = 2\)
• \((X+1)^5 = 2X+2\)
• \((X+1)^6 = 2X+1\)
• \((X+1)^7 = X\)
• \((X+1)^8 = 1\)
Word size extension field arithmetic

- Pre-compute 3 tables
 1) Correspondence between x and i: $t_1[x] = i$, s.t. $x = g^i$
 2) Correspondence between i and x: $t_2[i] = x$, s.t. $x = g^i$
 3) « Zech logarithm » table: $t_3[i] = j$, s.t. $1+g^i = g^j$

- Perform operations only on the indices
 - No system division (can be 10 times slower than other arithmetic operations)
 - Polynomial operations of degree k replaced by 2 or 3 integer operations and sometimes a table lookup
 - 0 and 1 have special values, for instance 0 and p^k-1
 - $a \times x : (g^i \times g^j) = g^{i+j \pm (p^k-1)}$
 - $x + y = g^j + g^k = g^k \times (1+g^{i-k})$
Linear Algebra over small extension fields

- Polynomials as table indexes?
 ☺ Kronecker substitution (p-adic transform) replaces the indeterminate by p (to minimize table size) to get a bijection

- Calling SSE, numerical BLAS routines can be 2 or 4 times faster than integer routines

- Polynomials as numerical values?
 + Kronecker substitution (q-adic transform) replaces the indeterminate by q>n(p-1)^2 (to be able to perform the linear algebra operations on the coefficients without overlapping)
 + Delayed reduction
 ⇒ Works as long as \(\sum (\sum a_i b_j)q^{i+j} < q^{2k-1} < 2^{53} \)
Improve the q-adic algorithm

Algorithm 3 Polynomial dot product by DQT

Input: Two vectors v_1 and v_2 in $(\mathbb{Z}/p\mathbb{Z}[X]/P_k)^n$ of degree less than k.
Input: a sufficiently large integer q.
Output: $R \in GF(p^k)$, with $R = v_1^T.v_2$.

Polynomial to q–adic conversion

1: Set \tilde{v}_1 and \tilde{v}_2 to the floating point vectors of the evaluations at q of the elements of v_1.

1: Table lookup

Numerical computation (or BLAS call)

2: Compute $\tilde{r} = \tilde{v}_1^T.\tilde{v}_2$

Building the solution (can be $2k$ divisions)

3: $\tilde{r} = \sum_{i=0}^{2k-2} \tilde{\mu}_i q^i$.

3: REDQ simultaneous reduction

4: For each i, set $\mu_i = \tilde{\mu}_i m_i$

4: REDQ table lookup

5: set $R = \sum_{i=0}^{2k-2} \mu_i X^i$
Q-adic transform revisited

Algorithm 4 Dot product over Galois fields via FQT

Input: a field $\text{GF}(p^k)$ with elements represented as exponents of a generator of the field.

Input: Two vectors v_1 and v_2 of elements of $\text{GF}(p^k)$.

Input: a sufficiently large integer q.

Output: $R \in \text{GF}(p^k)$, with $R = v_1^T \cdot v_2$.

Tabulated q–adic conversion (1 table)

1. Set \tilde{v}_1 and \tilde{v}_2 to the floating point evaluations at q of the elements of v_1 and v_2.

The floating point computation

2. Compute $\tilde{r} = \tilde{v}_1^T \cdot \tilde{v}_2$;

Delayed reduction compression

3. $[u_0, \ldots, u_{2k-2}] = \text{REDQ_COMP}(\tilde{r})$

Tabulated (2 tables) radix conversion to exponents of the generator

4. Set $L = \text{REDQ_CORR}([u_0, \ldots, u_{k-1}])$ \hspace{1cm} \{representation of $\sum_{i=0}^{k-2} \mu_i X^i$\}

5. Set $H = \text{REDQ_CORRvariant}([u_{k-1}, \ldots, u_{2k-2}])$ \hspace{1cm} \{H is $X^{k-1} \times \sum_{i=k-1}^{2k-2} \mu_i X^{i-k+1}$\}

Reduction in the field

6. Return $R = H + L \in \text{GF}(p^k)$;
Q-adic transform revisited

<table>
<thead>
<tr>
<th>Memory</th>
<th>Alg. 3 (3p^k)</th>
<th>Alg. 4 (4p^k + 2^{1+k\lceil\log_2 p\rceil})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A xpy</td>
<td>0</td>
<td>(k)</td>
</tr>
<tr>
<td>D iv</td>
<td>(2k - 1)</td>
<td>0</td>
</tr>
<tr>
<td>T able</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>R ed</td>
<td>(\geq 5k)</td>
<td>1</td>
</tr>
</tbody>
</table>
Conversions: FQT vs 2002 algorithm

![Graph showing conversions between FQT and 2002 algorithm](image)
fgemm today

[H, Giorgi, Pernet 2009]

Hz x 4.6 ; BLAS x 12 ; GF(9) x 19.2

 Millions of finite field operations per second

Matrix order

Xeon, 3.4 GHz
Conclusion

- Compressed arithmetic gains constant factors
 - 64bits: Degree 3/4/5 Polynomial multiplication at cost 1
 - 64bits: Size 3/4/5 dotproduct at cost 1
 - Some larger precision arithmetic could be used ...

- The FFLAS paradigm is to convert towards a representation where cache/SSE/multicore efficient routines exist
 - Integer SSE (2009?) will extend the mantissa from 53 to 64 bits
 - Extended BLAS [Demmel et al.] or Complex BLAS could give 128 bits ...
Perspectives

• Implementations of Full compression

• Explore other choices of q

• Automatic recursive cutting:
 – e.g.: n=2048 can use compression factor of 4 where n=2049 can use only a factor of 3
 – Alternative: compute multiplications of size 1024 with compression factor of 4 and the highest recursive level within the uncompressed field
 ⇒ smoothen the drops at the change of compression factor
Simultaneous Modular Reduction and Kronecker Substitution for small finite fields

Jean-Guillaume Dumas
Laurent Fousse
Bruno Salvy