Cluster complexes and generalized associahedra
Christian Stump, Universität Hannover, Feb 8, 2012
1. Cluster Algebras
(introduced by S. Fomin and A. Zelevinsky 2001)
A cluster algebra $\mathcal{A}$ of rank $n$ is a subring of the ring of rational functions $\mathbb{Q}(x_1,\ldots,x_n)$ equipped with
- a distinguished set of generators (cluster variables),
- grouped into overlapping subsets (clusters) of cardinality $n$.
The main examples of cluster algebras are coordinate rings of important algebraic varieties such as
- homogeneous coordinate rings of Grassmannians and of Schubert varieties.
Starting with an initial cluster $C = \{x_1, \ldots, x_n\}$, there is for any $1 \leq k \leq n$ a combinatorial rule in form of
- a skew-symmetrizable $(n \times n)$-integer matrix $M = (m_{ij})$,
or equivalently
- a quiver on $n$ vertices with edge labels $(m_{ij}, -m_{ji})$.
to construct another cluster $\mu_k(C) = C - \{x_k\} \cup \{\tilde x_k\}$, and a new skew-symmetrizable matrix $\mu_k(M) = \widetilde M$.
- The pair $(C,M)$ is called initial seed,
- the pair $\mu_k(C,M) = (\mu_k(C),\mu_k(M))$ is obtained from $(C,M)$ by mutating in direction $k$,
- the mutation $\mu_k$ is an involution, $\mu_k^2 = \operatorname{id}$.
As a first example, we consider
Cluster Algebras of rank 2
For two positive integers $b$ and $c$, define an algebra $\mathcal{A}(b,c)$
- the cluster variables are the elements $x_m$ for $m \in \mathbb{Z}$, defined recursively the the exchange relation
$$x_{m-1} x_{m+1} = \begin{cases} x_m^b & \text{if m is odd} \\ x_m^a & \text{if m is even} \end{cases}$$
- iterating this relations, one can express each $x_m$ as a rational function in $x_1, x_2$.
- The clusters are $\{ x_m, x_{m+1} \}$, and we can reach each cluster by a series of exchanges.
{{{id=2|
S = ClusterSeed(['R2',(1,1),2])
S.interact()
///
}}}
{{{id=23|
S = ClusterSeed(['R2',(1,1),2])
S.mutation_sequence([0,1,0,1,0],show_sequence=True)
///
\newcommand{\Bold}[1]{\mathbf{#1}}\left[\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|\right]
}}}
Defining the mutation involution $\mu_k$
$$x_k \mu_k(x_k) = \prod x_i^{[b_{ik}]_+} + \prod x_i^{[-b_{ik}]_+}$$
$$\tilde b_{ij} = \begin{cases} -b_{ij} & \text{ if } i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+ & \text{ otherwise } \end{cases}$$
Theorem (Laurent phenomenon, Fomin-Zelevinsky)
All cluster variables are indeed Laurent polynomials in $x_1,\ldots,x_n$.
Theorem (Finite type cluster algebras, Fomin-Zelevinsky)
Let $\mathcal{A}$ be a cluster algebra. Then
$\mathcal{A}$ has a finite number of cluster variables
if and only if
Some mutation matrix for $\mathcal{A}$ is a Cartan matrix of finite type.
{{{id=5|
S = ClusterSeed(['R2',(1,2),2])
S.interact()
///
}}}
{{{id=6|
S = ClusterSeed(['R2',(1,3),2])
S.interact()
///
}}}
{{{id=7|
S = ClusterSeed(['R2',(1,4),2])
S.interact()
///
}}}
Connections of Cluster Algebras to other fields
In the past ten years, cluster algebras have been found to be related to a number of other topics such as
- quiver representations,
- tropical geometry,
- canonical bases of semisimple algebraic groups,
- total positivity,
- generalized associahedra,
- Poisson geometry, and
- Teichmüller theory.
In the past 12 months, there appeared
- about 35 papers on the arXiv having "cluster algebra" in the title,
- and about 100 papers having it in the abstract.
2. The cluster complex
Let $\mathcal{A}$ be a cluster algebra of finite type. The cluster complex $C(\mathcal{A}_W)$ is the simplicial complex with
- vertices being cluster variables,
- facets being clusters.
The main aim of this talk is a presentation of
- a new combinatorial description of the cluster complex in finite types
(joint work with C. Ceballos and J.-P. Labbé)
- a construction of a polytope which graph is exactly the exchange graph of the cluster algebra / cluster complex
(joint work with V. Pilaud)
Both constructions together provide a completely new approach to cluster complexes in finite types.
4. Subword complexes
(introduced by A. Knutson and E. Miller 2003)
Let
- $(W,S)$ be a Coxeter system,
- $Q$ be a (not necessarily reduced) word in $S$, and
- $w$ be an element in $W$.
The subword complex $\Delta(Q,w)$ is the simplicial complex with
- vertices being (positions of) letters in $Q$,
- facets being complements of subwords of $Q$ that are reduced expressions for $w$.
(introduced by S. Fomin and A. Zelevinsky 2001)
{{{id=11|
W = CoxeterGroup(['A',2],index_set=[1,2])
Q = [1,2,1,2,1]
w = W.w0
S = SubwordComplex(Q,w)
S.facets()
///
\newcommand{\Bold}[1]{\mathbf{#1}}\left\{\left(1, 2\right), \left(0, 4\right), \left(2, 3\right), \left(0, 1\right), \left(3, 4\right)\right\}
}}}
Theorem (Ceballos-Labbé-S.)
The cluster complex can be obtained as a subword complex for a well-chosen word $Q = {\bf cw}_\circ$ and the longest element $w_\circ \in W$,
$$C(\mathcal{A}_W) \cong \Delta(Q,w_\circ).$$
5. Generalized associahedra
{{{id=20|
W = CoxeterGroup(['A',3],index_set=[1,2,3])
Q = [2,3,1,3,2,1,2,3,1]
w = W.w0
S = SubwordComplex(Q,w)
S.facets()
///
\newcommand{\Bold}[1]{\mathbf{#1}}\left\{\left(1, 2, 8\right), \left(3, 6, 8\right), \left(3, 4, 5\right), \left(2, 3, 4\right), \left(1, 2, 4\right), \left(1, 4, 5\right), \left(1, 6, 8\right), \left(2, 3, 8\right), \left(1, 5, 6\right), \left(3, 5, 6\right)\right\}
}}}
Theorem (Pilaud-S.)
- The brick polytope $\mathcal{B}({\bf cw}_\circ)$ realizes the subword complex $S({\bf cw}_\circ)$ and thus the cluster complex $C(\mathcal{A}_W)$.
- The above realization is an affine translation of the polytopal realizations of Hohlweg-Lange-Thomas and of Chapoton-Fomin-Zelevinsky.
Corollary
The brick polytope $\mathcal{B}({\bf cw}_\circ)$
- gives an explicit way to realize generalized associahedra,
- gives a vertex and a facet description of the generalized associahedra,
- gives a natural Minkowski decomposition of generalized associahedra into Coxeter matroid polytopes.
{{{id=24|
///
}}}