Cluster complexes and generalized associahedra

Christian Stump, Universität Hannover, Feb 8, 2012

1. Cluster Algebras

(introduced by S. Fomin and A. Zelevinsky 2001)

A cluster algebra $\mathcal{A}$ of rank $n$ is a subring of the ring of rational functions $\mathbb{Q}(x_1,\ldots,x_n)$ equipped with

The main examples of cluster algebras are coordinate rings of important algebraic varieties such as

Starting with an initial cluster $C = \{x_1, \ldots, x_n\}$, there is for any $1 \leq k \leq n$ a combinatorial rule in form of

to construct another cluster $\mu_k(C) = C - \{x_k\} \cup \{\tilde x_k\}$, and a new skew-symmetrizable matrix $\mu_k(M) = \widetilde M$.

As a first example, we consider

Cluster Algebras of rank 2

For two positive integers $b$ and $c$, define an algebra $\mathcal{A}(b,c)$

$$x_{m-1} x_{m+1} = \begin{cases} x_m^b & \text{if m is odd} \\ x_m^a & \text{if m is even} \end{cases}$$

{{{id=2| S = ClusterSeed(['R2',(1,1),2]) S.interact() /// }}} {{{id=23| S = ClusterSeed(['R2',(1,1),2]) S.mutation_sequence([0,1,0,1,0],show_sequence=True) /// \newcommand{\Bold}[1]{\mathbf{#1}}\left[\verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|, \verb|A|\phantom{x}\verb|seed|\phantom{x}\verb|for|\phantom{x}\verb|a|\phantom{x}\verb|cluster|\phantom{x}\verb|algebra|\phantom{x}\verb|of|\phantom{x}\verb|rank|\phantom{x}\verb|2|\phantom{x}\verb|of|\phantom{x}\verb|type|\phantom{x}\verb|['A',|\phantom{x}\verb|2]|\right] }}}

Defining the mutation involution $\mu_k$

$$x_k \mu_k(x_k) = \prod x_i^{[b_{ik}]_+} + \prod x_i^{[-b_{ik}]_+}$$

$$\tilde b_{ij} = \begin{cases} -b_{ij} & \text{ if } i = k \text{ or } j = k \\ b_{ij} + [b_{ik}]_+ [b_{kj}]_+ - [-b_{ik}]_+ [-b_{kj}]_+ & \text{ otherwise } \end{cases}$$

 

Theorem (Laurent phenomenon, Fomin-Zelevinsky)

All cluster variables are indeed Laurent polynomials in $x_1,\ldots,x_n$.

 

Theorem (Finite type cluster algebras, Fomin-Zelevinsky)

Let $\mathcal{A}$ be a cluster algebra. Then

$\mathcal{A}$ has a finite number of cluster variables

if and only if

Some mutation matrix for $\mathcal{A}$ is a Cartan matrix of finite type.

{{{id=5| S = ClusterSeed(['R2',(1,2),2]) S.interact() /// }}} {{{id=6| S = ClusterSeed(['R2',(1,3),2]) S.interact() /// }}} {{{id=7| S = ClusterSeed(['R2',(1,4),2]) S.interact() /// }}}

Connections of Cluster Algebras to other fields

In the past ten years, cluster algebras have been found to be related to a number of other topics such as

In the past 12 months, there appeared

2. The cluster complex

Let $\mathcal{A}$ be a cluster algebra of finite type. The cluster complex $C(\mathcal{A}_W)$ is the simplicial complex with

The main aim of this talk is a presentation of

Both constructions together provide a completely new approach to cluster complexes in finite types.

4. Subword complexes

(introduced by A. Knutson and E. Miller 2003)

Let

The subword complex $\Delta(Q,w)$ is the simplicial complex with

(introduced by S. Fomin and A. Zelevinsky 2001)
{{{id=11| W = CoxeterGroup(['A',2],index_set=[1,2]) Q = [1,2,1,2,1] w = W.w0 S = SubwordComplex(Q,w) S.facets() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left\{\left(1, 2\right), \left(0, 4\right), \left(2, 3\right), \left(0, 1\right), \left(3, 4\right)\right\} }}}

Theorem (Ceballos-Labbé-S.)

The cluster complex can be obtained as a subword complex for a well-chosen word $Q = {\bf cw}_\circ$ and the longest element $w_\circ \in W$,

$$C(\mathcal{A}_W) \cong \Delta(Q,w_\circ).$$

5. Generalized associahedra

{{{id=20| W = CoxeterGroup(['A',3],index_set=[1,2,3]) Q = [2,3,1,3,2,1,2,3,1] w = W.w0 S = SubwordComplex(Q,w) S.facets() /// \newcommand{\Bold}[1]{\mathbf{#1}}\left\{\left(1, 2, 8\right), \left(3, 6, 8\right), \left(3, 4, 5\right), \left(2, 3, 4\right), \left(1, 2, 4\right), \left(1, 4, 5\right), \left(1, 6, 8\right), \left(2, 3, 8\right), \left(1, 5, 6\right), \left(3, 5, 6\right)\right\} }}}

Theorem (Pilaud-S.)

Corollary

The brick polytope $\mathcal{B}({\bf cw}_\circ)$

{{{id=24| /// }}}